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1 Introduction 

This paper is addressed to readers familiar with the techniques of validating programming originated by Andrzej 

Blikle at the turn of the 1970s and 1980s (see [2], [3], [4], and [5]) and currently explored on a theoretical basis 

in the Lingua project [6]. From the perspective of the pursued goal, this approach is similar to the idea of devel-

oping programs that are correct-by-construction suggested by Edsger Dijkstra in the years 1969/70 (see [7] and 

[8]), and currently developed in the Dafny project (see [11], [10], [9] and [10]). Both these approaches share the 

idea that a program should be developed in a step-by-step process where each step guarantees the correctness of 

the current program. In both methods, a program includes its specification (syntactically) in the form of pre- and 

postconditions, along with some internal assertions. However, technically and mathematically, these approaches 

are significantly different. 

The technical core of the Lingua project is a programming language Lingua-V (V for “validating”), which 

includes a “standard” programming language Lingua, plus its extension by metaprograms, which syntactically 

consist of Lingua programs plus their specifications. A metaprogram is said to be correct if its program compo-

nent is totally correct with clean termination (generates no errors) for its specification. Metaprograms are devel-

oped through construction rules based on proof rules in Dijkstra’s style. On the grounds of a fully formalized 

denotational model of Lingua, these rules are proved sound, which means that given correct metaprograms as 

inputs, they return correct metaprograms as outputs. In every step of a metaprogram development, a programmer 

has to (simplifying a little): 

• identify one or more metaprograms in a repository of earlier constructed correct metaprograms, 

• find a construction rule in a repository of sound construction rules, 

• apply this rule to the identified metaprograms and store the new metaprogram in the repository. 

Since sometimes applying a construction rule requires proving the validity of formulas that describe properties 

of values, types, objects, or other mathematical beings, we might need a theorem prover “tuned” to Lingua-V to 

assist programmers. 

As we will see in Sec. 4, metaprograms and some of their construction rules form formulas of a formalized 

theory of the denotations of Lingua-V. Developing correct metaprograms can therefore be seen as proving lem-

mas within such a theory. In this paper, we examine the following general problem: given a programming lan-

guage with a denotational model construct. 

• a formalized theory of this language's denotations, i.e., 

o a formalized language, 

o a set of axioms, 

• an ecosystem for programmers to use the theory in developing programs.  

Formally, the ecosystem will be represented as a programming language made up of program-building macros. 

The abstract approach will be demonstrated through the development of a theory and an ecosystem for Lingua-

V. 

2 Preliminaries 

2.1 Introductory remarks about an ecosystem for Lingua-V programmers 

An ecosystem for Lingua-V programmers should help them create correct metaprograms. We assume that met-

aprograms will be developed in a bottom-up manner, starting with some previously created metacomponents, i.e.: 

• correct metaprograms,  

• correct metadeclarations,  

• correct metainstructions, 

• other valid metaconditions, 
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and combining or transforming them into new components according to sound construction rules. We assume, 

therefore, that the work of programmers in Lingua-V will be supported by an ecosystem that includes two main 

tools: 

• a repository to store valid metacomponents ready for future use; in particular, the axioms of the corre-

sponding theory should be stored here, 

• an engine to construct new valid metacomponents from previously developed ones. 

We assume further that the engine should offer: 

• an intelligent Text Editor that includes a Lingua-V parser to ensure that created components are syntacti-

cally correct, 

• a Composer providing tools for creating new valid metacomponents from previously developed ones, 

• a Theorem Prover to prove the validity of these metacomponents that can’t be generated by the composer. 

 

Fig. 2.1-1 An ecosystem for programmers 

Storing conditions in the repository allows programmers to use short names for long conditions during program 

development.  

We assume that a composer’s work will involve performing predefined procedures to build new components 

and store them in the repository. These procedures will be referred to as actions.  

As mentioned earlier, developing correct metaprograms in an ecosystem can be seen as validating the formulas 

in a formalized theory. By such a theory, we mean a triple consisting of: 

• a formalized language derived from (including) the source programming language, 

• a set of axioms; some program construction rules will constitute a special category of axioms, 

• a set of classical inference rules along with some additional rules specific to the underlying programming 

language.  

In this paper, we investigate the development of a formalized theory for programming languages with a denota-

tional model. Based on this theory, proofs can be conducted in two regimes: 

• ex-ante constructive proofs ― when we use a composer to build valid formulas (e.g., correct metapro-

grams) from earlier proved formulas; in this case, the proof of validity is developed simultaneously with 

the construction of the formula. 

• ex-post analytic proofs ― when we use a theorem prover; in this case, a formula to be proved is presented 

first, and its proof is developed (discovered) later. 

We expect that most of our programmers' work will involve using a composer, although they may also occasion-

ally use a theorem prover. It is important to note here that the theorem prover will not be used to verify the 

correctness of programs, but only to check the validity of certain “technical” metaconditions.  
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On the way from Lingua to an ecosystem, we shall develop a hierarchy of languages ― all of them with 

denotational models: 

• Lingua    ― a source programming language, 

• Lingua-V  ― a language of validating programming; an extension of Lingua, 

• Lingua-FT  ― a language of a formalized theory (FT) of the denotations of Lingua-V, 

• Lingua-AFT ― a language of an axiomatized theory; an extension of Lingua-FT, 

• Lingua-E   ― a language of actions executed by the ecosystem. 

The need to extend Lingua-FT to Lingua-AFT comes from the fact that, in addition to axioms describing prop-

erties of denotations, we may also require axioms about data, such as integers, reals, booleans, texts, or other 

items like sets. In turn, the denotational model of Lingua-E represents the mechanism of our ecosystem. Its main 

tools will be actions that create and store correct metaprograms.  

2.2 An example of a program development 

Let’s analyze an example of a program development to illustrate the method that we are going to study. Assume 

that we intend to develop the following simple metaprogram: 

pre (x is free) and-k (y is free) : 
 let x be integer tel; 
 let y be integer tel; 
 x := 3; 
 y := x+1 ; 
 x := 2*y 
post (x is integer) and-k (y is integer) and-k (x < 10) 

We tacitly assume that in the current implementation of Lingua-V, the range of integers is such that our program 

will not generate an overflow error, and, therefore, for simplicity, we shall omit this aspect in our conditions. 

We shall describe the development of our program as a sequence of compound steps, each consisting of several 

elementary steps. We assume that at the end of every compound step, the resulting metacomponent is saved in 

the repository. In the description of each step, we first specify the intended target program, and then we explain 

the process of its construction. As in [6], metaprograms and their components are typed in Ariel narrow, but we 

make an exception for metavariables that are typed in Arial underlined. This rule is formalized and explained in 

Sec. 4. Actions in Lingua-E are typed in Arial Narrow blue. We shall use the same font to type the names of the 

elements stored in the Repository. All elements of the Repository will be referred to as lemmas.  

Step 1. The development of the declaration of x: 

P1 :  pre (x is free) and-k (integer is type) 
let x be integer tel   

post var x is integer  

This metacomponent is generated from the following atomic construction rule (Sec. 9.4.4 of [6]) which must be 

stored in the repository as an axiom: 

A1 : pre (ide is free) and-k (tex is type) 
let ide be tex tel   

post var ide is tex 

We use Composer to execute the action  

substitute(A1, [ide/x,  tex/integer], P1) 

which applies the indicated substitution to A1 and stores it in P1.  

Step 2. The elimination of the tautology condition (integer is type) from P1. 

P2 :  pre (x is free) 
let x be integer tel   
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post var x is integer  

This step is based on the following metacomponents and construction rules that must be present in the Repository 

(error transparency of con means that, for states carrying an error, the denotation of con returns this error). 

A2  error-transparent(con) implies con  NT ― this is a definitional axiom of NT; denotationally, NT is a 

condition, to be read “nearly true”, that is satisfied for all states that do not carry errors, whereas for states 

carrying errors they return these errors,  

A3  (error-transparent(con1) and (NT  con2))  implies (con1 and-k con2 ⟺ con1), 

A4  (con1 ≡ con2) implies (con1  con2), 

A5  (con1 ≡ NT) implies ((con1 and con2) ≡ con1)),  

A6  integer is type ≡ NT, 

A7  error transparent(ide is free), 

A8  pre prc : sin post poc 
  prc ⟺ prc-1 

  pre prc-1 : sin post poc 

Using lemmas A2 to A7, we derive metacondition (L for “lemma”) 

L1  (x is free) and-k (integer is type) ⟺ (x is free) 

and then we derive of P2 from P1 by A8.   

Step 3. The development of the metadeclaration 

P3 : pre (y is free) 
let y be integer tel 

post (var y is integer) 

This step is analogous to the development of P2.   

Step 4. The enrichment of P2 by (y is free) and P3 by (var x is integer) 

P4 : pre (x is free) and-k (y is free) 
let x be integer tel   

post (var x is integer) and-k (y is free) 
 
P5 : pre (var x is integer) and-k (y is free) 

let y be integer tel 
post (var x is integer) and-k (var y is integer) 

To perform these transformations, we need the following lemmas in the Repository (for irrelevant for, see Sec. 

9.3.4 of [6]): 

L2  different(ide1, ide2) implies ((ide1 is free) irrelevant for (let ide2 be tex tel)), 

L3  different(ide1, ide2) implies ((ide1 is tex1) irrelevant for (let ide2 be tex2 tel), 

L4  pre prc : sin post poc 

  con irrelevant for sin 

  pre prc and-k con : sin post poc and-k con 

Step 5. The sequential combination of P4 and P5 

P6 : pre (x is free) and-k (y is free) 
let x be integer tel   
let y be integer tel 

post (var x is integer) and-k (var y is integer) 

Here we use Lemma 9.4.3-5 (Sec. 9.4.3 of [6]), which must be in the Repository.  
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Step 6. The development of a metaprogram 

P7 : post (var x is integer) and-k (var y is integer) 
   x := 3 
  post (var x is integer) and-k (var y is integer) and-k (x = 3) 

To develop this program, we use @-tautology (Sec. 9.4.6.2 of [6])  

pre sin @ con 
 sin 
post con 

which must be in the Repository. By an appropriate substitution applied to this formula, we create the following 

metaprogram: 

P6.1 pre x := 3 @ (var x is integer) and-k (var y is integer) and (x = 3) 
   x := 3 

post (var x is integer) and-k (var y is integer) and-k (x = 3) 

Next, we find in the Repository the following lemma: 

(ide not in vex) implies  
(ide := vex @ (var ide is tex) and-k (vex is tex) and-k (ide = vex) ⟺ (var ide is tex) and-k (vex is tex))  

from which we can derive by appropriate rules 

x := 3 @ (var x is integer) and-k (var y is integer) and x = 3 ⟺ (var x is integer) and-k (var y is integer)  

Now, we use Lemma 7.  (see P2 

Step 7. The development of a metaprogram 

P8 : pre (var x is integer) and-k (var y is integer) and-k (x = 3) 
   y := x+1 
  post (var x is integer) and-k (var y is integer) and-k (y = 4) 

We use a technique similar to that in Step 6 to derive the weak equivalence. 

y := x+1 @ (var x is integer) and-k (var y is integer) and-k (y = 4) ⟺  
(var x is integer) and-k (var y is integer) and-k (x=3)  

Step 8. The development of a metaprogram 

P9 : pre (x is free) and-k (y is free) 
let x be integer tel   
let y be integer tel 
x := 3; 
y := x + 1 

  post (var x is integer) and-k (var y is integer) and-k (y = 4) 

We combine sequentially P6, P7, and P8. 

Step 9. The development of a metaprogram 

P10 :  pre (var x is integer) and-k (var y is integer) and-k (y = 4) 
   x := 2*y 
  post (var x is integer) and-k (var y is integer) and-k (y = 4) and-k (x = 8) 

We proceed similarly to Step 6.  

Step 10. The development of a metaprogram 

P11 : pre (var x is integer) and-k (var y is integer) and-k (y = 4) 
   x := 2*y 
  post (var x is integer) and-k (var y is integer) (x < 10) 
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In this step, we replace the postcondition of P10 by a weaker one (Sec. 9.4.3 of [6]), and we have to use the 

Theorem Prover to prove the following metaimplication: 

(var x is integer) and-k (x = 8)  (var x is integer) and-k (x < 10)  

which essentially means that we have to prove the validity of the formula 8 < 10.  

Step 11. Our target program is generated by combining programs P9 and P11. 

There are two important observations we can draw from our example. Both are based on the fact that our 

program derivation technique involves proving theorems about programs and that our proofs differ from proofs 

in “usual” mathematics. 

First, as we have already mentioned, our proofs are ex-ante rather than ex-post. This fact has a technical con-

sequence regarding the process of conducting proofs. In traditional proofs conducted by theorem provers, users 

must provide the so-called tactics, which are hints on how to carry out proofs. These tactics need to be “known” 

by users, which is not always straightforward. In our case, the roles of ex-post tactics are played by the ex-ante 

choices of construction rules and components in the Repository. These choices are quite natural for programmers 

who know what program they intend to create.  

Our second observation is that, in our case, most of the work in constructing a program is done by the program 

composer rather than the theorem prover. In our example, the only general mathematical hypothesis we needed 

to prove appeared in Step 10 as the validity of  

8 < 10 ≡ NT 

which must be deduced from the basic mathematical axioms of integer arithmetic. At the same time, we have 

referred to our repository about 40 times.  

Of course, based on a single toy example, we cannot draw general conclusions, but this case indicates that 

there is something in this discrepancy. In our view, these preliminary investigations of the process of program 

development suggest that using Theorem Prover in an ex-ante constructive process of program validation may be 

much less “intensive” than in the ex-post analytical case. 

2.3 A recollection on first-order and second-order formalized theories 

As we have seen in our example, certain steps in the development of a program require proving the satisfaction 

of formulas that describe facts about the values of variables appearing in the program. Since in a “practical pro-

gramming”, such formulas may be computationally fairly complicated ― the number of variables in these for-

mulas may be comparable to the number of variables in a current program ― programmers in Lingua-V should 

be supported by an automatic theorem prover. To build such a prover, or to adapt an existing one to our goal, we 

first need to establish a formalized theory rich enough to talk about programs and their components, i.e., data, 

types, values, references, denotations, and so on. In this paper, we outline a general scenario for developing a 

theory for a programming language with a denotational model. We begin with a brief review of the concepts of 

first-order and second-order formalized theories.  

In first-order theories, we talk about the elements of a set Uni, usually called the universe, and about many-

argument functions and predicates on this set, i.e.: 

fun : Unicn ⟼ Uni   for n ≥ 0                     functions 

pre  : Unicn ⟼ Bool   for n ≥ 0                     predicates 

where 

boo : Bool = {tt, ff} 

The language of a first-order theory includes three syntactic categories: 

• variables running over Uni, 

• terms that represent functions, 

• formulas that represent predicates. 

To define them, we assume to be given four mutually disjoint sets of symbols: 
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var : Variable  ― a possibly infinite set of variables  
fn  : Fn    ― a finite set of function names, 
pn  : Pn    ― a finite set of predicate names, 
sep : Separator ― a finite set of separators such as parentheses, colons, etc.  

The union of all these sets is called an alphabet: 

Alphabet = Fn | Pn | Variable | Separator 

Every functional and predicative symbol has an arity ― a non-negative integer indicating the number of argu-

ments of this functional or predicative symbol, respectively. We thus define a function: 

arity : Fn | Pn ⟼ {0, 1, 2,…} 

We assume that zero-ary functional symbols, called constants, represent the elements of Uni, and zero-ary pre-

dicative symbols are simply true and false, representing logical values. Based on these assumptions, we define 

the sets of variables, terms, and formulas using the following grammar. 

var : Variable = 
 x | y | z | x-1 | y-1 | z-1 |…   variables may have indices  

 
ter : Term = 
 mk-term(Variable)     | make a term from a variable 

 fn()          |  for all fn : Fn with arity.fn = 0 
 fn(Term, … ,Term)     | for all fn : Fn with arity.fn = n and the argument tuples with n elements 

 
for : Formula = 
 true          | 

false          | 
pn(Term, … ,Term)     | for all pn : Pn with arity.pn = n and the argument tuple with n elements 

not(Formula) 
and(Formula, Formula)   | 
or(Formula, Formula)    | 
implies(Formula, Formula)  |1 
(∀ Variable) Formula    | 
(∃ Variable) Formula 

In this grammar, we have introduced a (meta)notational convention such that: 

1. the names of functions and predicates are printed in green Arial Narrow, 

2. separators are printed in green Arial Narrow, 

3. variables, i.e., the elements of Variable and metavariables like “Variable”, “Term”, “Formula” are 

printed in black Arial. 

This convention slightly modifies the one introduced in Sec. 7.2 of [6], where all terminal symbols of grammars 

are written in Arial Narrow. In this paper, we make an exception for variables, which are printed in Arial. This 

exception will be explained in Sec. 4.4. 

Variables appearing in formulas under the signs of quantifiers are said to be bound, and variables that are not 

bound are called free. In the set of formulas, we distinguish four categories: 

• open formulas  ― at least one free variable, e.g., x < 1 or (∀x)(x < y), 

• closed formulas  ― all variables are bound, e.g., (∀x)(∃y)(x < y), 

• ground formulas  ― no variables in such formulas, e.g., 1 < 2, 

• free formulas  ― some unbound variables in such formulas, e.g., x < 2 or (∀x)(x < y). 

In the set of terms, we distinguish only two categories: 

 
1 Of course, while we have negation and alternative, the remaining connectives may be defined, but we introduce them as 

primitive connectives for convenience. 
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• ground terms   ― no variables, 

• free terms    ― with variables. 

Let’s consider now a first-order arithmetic of natural numbers (non-negative integers) as an example of a first-

order theory. Let 

Variable  = {x, y, z,…, x-1, x-2,…}, variables may have indices,  

Fn    = {zer, suc) 
Pn   = {num, equ} 

where 

arity.zer  = 0   zer() or just zer represents number zero 

arity.suc  = 1   suc(x) is the successor of x 
arity.num  = 1   num(x) means that x is a number  

arity.equ  = 2   equ(x,y) means that x and y are equal 

Examples of terms in this theory may be: 

zer, suc(zer), suc(suc(zer)),.., suc(x), suc(suc(y)), … 

and examples of formulas: 

true, num(zer),  
equal(suc(zer), suc(x)),  
and(equal(suc(zer), suc(x)), equal(suc(suc(y)), suc(suc(x))), 
(∀x) not((equal(x, suc(x))). 

Given the language of our theory, we can define axioms that express the intended meanings of functions and 

predicates represented in the language by functional and predicational symbols. For better readability, we shall 

write  

(ter-1 = ter-2)   instead of  equ(ter-1, ter-2), 
(for-1 and for-2)  instead of  and(for-1, for-2), 
(pre-1 → pre-2)   instead of  implies(pre-1, pre-2). 

We will also omit parentheses when this does not cause ambiguity. The following axioms specify the expected 

properties of the equality predicate: 

(1) x = x 
(2) x = y → y = x 
(3) (x = y and y = z) → x = z 
(4) (x-1 = y-1 and … and x-n = y-n) → (fn(x-1,…,x-n) = fn(y-1,…,y-n))  for all fn : Fn 
(5) (x-1 = y-1 and … and x-n = y-n) → (pn(x-1,…,x-n) = pn(y-1,…,y-n))  for all pn : Pn 

Axioms (1) – (3) describe the fact that equality is an equivalence relation and two remaining (schemes of) axioms 

— that it is a congruence for all functions and predicates. The next group of axioms describes the intended prop-

erties of the meanings of num, zer, and suc2: 

(6) num(zer)            zero is a natural number, 
(7) num(x) → num(suc(x))        the successor of a natural number is a natural number, 
(8) num(x) → not (suc(x) = zer)      the successor of a natural number never equals zero, 
(9) x = suc(y) and x = suc(z) → y = z     suc is a reversible function 

A formal language together with axioms constitutes an axiomatic theory. On the grounds of such a theory, we 

can define the concepts of the validity of formulas and of a model of the theory. We shall define these concepts 

in an abstract case of a first-order language. We start by defining an interpretation of a language as a triple: 

Int = (Uni, F, P) 

where 

 
2 These axioms were formulated by an Italian mathematician Giuseppe Peano (1858 – 1932). 
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• Uni is a set called universe, and its elements are called primitive elements of the interpretation, 

• F is a function that, with every functional symbol fn of arity n ≥ 0, assigns a n-ary function  
F[fn] : Unicn ⟼ Uni, and for n = 0, F[fn] : ⟼ Uni, 

• P is a function that, with every predicative symbol pn of arity n ≥ 1, assigns a n-ary predicate   
P[pn] : Unicn ⟼ Bool; we assume that P[true] = tt and P[false] = ff  

Note that F and P are functions that belong to the metalevel of our theory, rather than to the theory itself, whereas 

fn and pn belong to the theory level ― more precisely to the theory’s language. By a valuation, we mean a total 

function that assigns elements of Uni to variables: 

vlu : Valuation = Variable ⟼ Uni3 

Now, for every interpretation of our theory, we can define the semantics of variables SV, of terms ST, and of 

formulas SF, respectively: 

SV : Variable  ⟼ Variable  
ST : Term   ⟼ Valuation ⟼ Uni 
SF : Formula  ⟼ Valuation ⟼ Bool 

such that for any variable var 

SV[var] = var 

and for every vlu : Valuation 

ST.[mk-term(var)].vlu    = vlu.var              for every var : Variable 
ST.[fn(ter-1,…,ter-n)].vlu  = F[fn].(ST.[ter-1].vlu,…,ST.[ter-n].vlu)  where n = arity.fn, n ≥ 0 

SF.[true].vlu      = tt 
SF.[false].vlu      = ff 
SF.[pn(ter-1,…,ter-n)].vlu = P[pn].(ST.[ter-1].vlu,…,ST.[ter-n].vlu)  where n = arity.fn, , n ≥ 1  
SF.[(for-1 and for-2)].vlu  = SF.[for-1].vlu and SF.[for-2].vlu 
SF.[(for-1 or for-2)].vlu  = SF.[for-1].vlu or SF.[for-2].vlu 
SF.[(for-1 implies for-2)].vlu = SF.[for-1].vlu implies SF.[for-2].vlu 
SF.[not(for)].vlu     = not SF.[for] 
SF.[(∀var)for].vlu     = tt iff for every  ele : Uni,     SF.[for].vlu[var/ele] = tt 
SF.[(∃var)for].vlu    = tt iff there exists ele : Uni, such that  SF.[for].vlu[var/ele] = tt 

where and, not,… are classical logical connectives of our metalevel.  

It is to be noticed in this place that scripts like pn(ter-1,…,ter-n) where ter-i’s represent arbitrary terms for-

mally do not belong to the language of our theory, but only represent its elements at the level of a metalanguage.  

We say that a formula for is satisfied in a given interpretation if, for every valuation vlu of this interpretation, 

the formula evaluates to true, i.e.,: 

SF.[for].vlu = tt. 

An interpretation is said to be a model of an axiomatic theory if all axioms of that theory are satisfied in this 

interpretation. A formula for is said to be valid in a theory with a set of axioms A, which we describe by a 

metaformula: 

A |= for, 

if it is satisfied in every model of this theory. In this case, we also say that for is a semantic consequence of the 

set of axioms A. An example of a valid formula in Peano’s arithmetic is 

not(zer = suc(zer)) 

which says that zero is different from its successor. Note that  

 
3 We introduce a metavariable vlu rather than val, since the latter is used in [6] for values.  
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A |= for(x) iff  A |= (∀x)for(x) 

where for(x) symbolically denotes a formula with a free variable x. 

Although the concept of validity provides a clear distinction between valid and invalid formulas, we do not 

use this concept to justify mathematical hypotheses. Instead, we employ a method of deduction that allows us to 

derive formulas from axioms using so-called inference rules. If a formula for can be derived by deduction from 

a set of axioms A, then we call it a theorem and we denote this fact by a metaformula: 

A |- for 

The three most commonly used rules of inference (we leave out some rules for quantifiers) are the following (not 

entirely formal): 

Rule of substitution 

A |- for(x) 

A |- for(ter) 

This rule states that if in a theorem we replace free variables with arbitrary terms, then the new formula can also 

be considered a theorem. The second rule is the main foundation of deduction. 

Rule of detachment (modus ponens) 

A |- for1 
A |- (for1 implies for2) 

A |- for2 

If we prove for-1 and we prove the implication (for-1 → for-2), then we can conclude that for-2 has been proved.  

Rule of generalization 

A |- for(x) 

A |- (∀x) for(x) 

where x is free in for(x). We will not discuss other rules involving quantifiers since they are not needed at this 

point. Once we add rules of inference to an axiomatic theory, we get a formalized theory.  

An Austrian mathematician, Kurt Gödel, proved in his doctoral dissertation in 1929 the following theorem: 

Gödel’s completeness theorem. In first-order theories, every proved formula is valid, and every valid formula 

can be proved. I.e., A |= for iff  A |- for. 

Unfortunately, despite this highly desirable property, first-order theories also have a serious flaw. Every first-

order theory that has an infinite model also has infinitely many non-isomorphic models. In simpler terms, we 

could say that in first-order theories, we never fully know what we are talking about. This is easily seen in our 

example of first-order arithmetic. Although our goal was probably to create a theory of natural numbers, and 

although such numbers with suc(x) = x+1 do form a model of our theory, the theory has many other non-iso-

morphic models. Let’s look at two of them.  

• In the first model, Uni is the set of all real numbers, num(x) is satisfied for all elements of Uni, and suc(x) 
= x+1. In this model, there are elements of Uni that are not reachable from zero by a multiple use of 

successor4. 

 

4 Note that here suc denotes a function that is the meaning of function name suc. 
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• In the second model, Uni includes only natural numbers plus one decimal number, e.g., 0,5. We set num(x) 
= tt for all elements of Uni, suc(x) = x+1 for all natural numbers, and suc(0,5) = 0,5. In this model, an 

element may be equal to its own successor.  

To address the “ambiguity of axioms” ― formally, we say that our theory is noncategorical, which means that it 

has nonisomorphic models ― we need to enrich the theory with the following second-order axiom of induction, 

where valuations may assign to variables not only elements of Uni but also predicates in Uni. 

10.  (P(zer) and (P(x) → P(suc(x)) → (num(x) → P(x)) 

In this axiom, P is a second-order (predicative) variable of arity 1, which means that valuations may assign to it 

arbitrary unary predicates in Uni. Axiom 10. says that if (our zero) zer has property P and, if for every element 

x with property P the successor of this element has property P, then all elements that satisfy num have property 

P. In other words, num represents the least set that includes zer and all its successors. This axiom guarantees 

that all models of our new theory are isomorphic with the algebra of all natural numbers where suc(x) = x + 1.5   

Another “advantage” of axiom 10 is that in our theory, we can carry out proofs by induction. As a matter of 

fact, we can do it in every theory which includes second-order arithmetic, i.e., which either includes axioms (6) 

– (10), or where these axioms can be formulated and proved. As an example, let’s prove the following theorem 

x ≠ suc(x)                               (2.1-1) 

where x ≠ y stands for not(x = y). It is worth noticing that this formula is not valid in the first-order arithmetic.  

Let Q(x) be a predicate satisfied if x ≠ suc(x). By axiom (8), Q(zer) is satisfied. Let for a given x, formula x 
≠ suc(x) be satisfied. Then, by axiom (9) suc(x) ≠ suc(suc(x)), hence Q(suc(x)). The application of axiom (10) 

completes the proof.  

The main technical difference between first-order and second-order theories is that the latter have three sets 

of variables, rather than only one, i.e.: 

inv : Iv = {inv-1, … ,inv-p}      individual variables; first-order variables 
fuv : Fv  = {fuv-1, … ,fuv-q}      functional variables; second-order variables 

prv : Pv  = {prv-1, … ,prv-r}      predicative variables; second-order variables, 

and, of course, function arity is now extended to second-order variables, i.e.: 

arity : Fn | Pn | Fv | Pv ⟼ {0, 1, 2, …} 

We appropriately extend the sets of terms and formulas by adding new clauses to the equations of the former 

grammar: 

ter : Term = 
all former clauses 

 fuv(Term, … ,Term)   | for every fuv : Fv with arity.fuv = n and the argument tuples with n elements 

 
for : Formula = 

all former clauses 

 prv(Term, … ,Term)   | for every prv : Pv with arity.prv = n and the argument tuples with n elements 

Note that for every second-order variable we create an individual grammatical clause, similarly to functional and 

predicational symbols. At the same time, we do not introduce grammatical equations to generate second-order 

variables, as is the case for individual variables:6 

inv : IndVar = 

 
5 Axiom (10) was also formulated by G. Peano.  
6 Theoretically we could resign from this equation as well and in this place introduce an individual semantic equation for 

each variable as in the case of second-order variables. We are not doing so since having a domain of such variables we 
can define the domain of single-variable terms using one syntactic constructors mk-term and one corresponding semantic 
constructor. For second-order variables we had to repeat this construction for every arity of variables. In this situation the 
solution with individual clauses for each second-order variable seem technically simpler.  
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 x | y | z | x-1 | y-1 | z-1 |…   individual variables  

Finally, we add new semantic clauses to the definitions of the functions of semantics of terms and of formulas ― 

again, one clause for every second-order variable: 

ST.[fuv(ter-1,…,ter-n)].vlu = (vlu.fuv).(ST.[ter-1].vlu,…,ST.[ter-n].vlu)  where n = arity.fuv, , n ≥ 0  

SF.[prv(ter-1,…,ter-n)].vlu = (vlu.prv).(ST.[ter-1].vlu,…,ST.[ter-n].vlu)  where n = arity.prv, , n ≥ 1  

In the future, the theories used by our theorem provers will be second-order and will include arithmetic, thereby 

offering the possibility of carrying out proofs by induction. There is, however, a price that we have to pay for all 

these advantages: 

Gödel’s incompleteness theorem. In second-order theories with arithmetic, there exist valid formulas that 

can’t be proved.  

Fortunately, we have yet another theorem: 

Gödel’s adequacy theorem. In second-order theories with arithmetic, every proved formula is valid. I.e.  

if  A |- for then A |= for. 

This second theorem is satisfied by practically all mathematical theories used by “working mathematicians”. It 

turns out that practically all the valid formulas that we need to prove in these theories are provable.  

At the end of this section, we recall the definitions of two important concepts concerning formalized theories.  

Def. A formalized theory is called consistent if it has a model. 

The following theorem describes two important properties of consistent theories. 

Theorems about consistency.  

(1) A theory is consistent iff there is no valid formula for in such that |= for and |= not for. 

(2) A theory is consistent iff there exists at least one not valid formula in it. 

Inconsistent theories are of no scientific interest because, by (2), all their formulas are valid. In other words, in 

inconsistent theories, we can’t distinguish between the truth and the falsity.  

Def. A formalized theory is called complete if it is consistent and for any formula for either |- for or |- not for. 

This time, incomplete theories are usually more interesting than the complete ones, because they are more general. 

For instance, a formalized theory of groups is not complete, since on its grounds, we cannot prove that a group 

has exactly 15 elements nor that it doesn’t (see [13], page 292).  

In formalized mathematics, and in particular in our investigations, we do not necessarily need to struggle to 

make our theories complete. However, on the other hand, we have to make our theory “sufficiently complete” to 

be able to prove the correctness of “sufficiently many correct metaprograms”.  

2.4 Formalized theories in an algebraic framework 

One of our goals in this paper is to outline a general framework for building a formalized theory of second-order 

logic, where we can describe the process of developing correct metaprograms in a Lingua-V-like language. Cre-

ating such a theory involves developing a language that we will call Lingua-FT, which is sufficiently expressive 

to state and verify the correctness of metaprograms in Lingua-V. In this section, we will examine this task in an 

abstract scenario where: 

• the source language, called Language-V, is given as a pair of algebras ― of syntax AlgSyn-V and of 

denotations AlgDen-V ― sharing a common signature and a unique homomorphism (the semantics) 

between them,  
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• the target language called Language-FT is a language of a formalized second-order theory where we can 

talk about and prove the truth of valid formulas expressed in Language-V; also, this language will be 

identified by two algebras and a homomorphism, i.e., will have a denotational model.  

 

Fig. 2.4-1 The development of a Language-FT for a programming Language-V 

The transformation of a source language into a target language will be performed in five steps, as shown in Fig. 

2.4-1. 

1. The identification of an algebra of denotation AlgDen-V of some source language.  

2. The identification of an algebra AlgSyn-V of abstract syntax for AlgDen-V. The elements of this lan-

guage will represent ground terms and ground formulas of the future Language-FT.  

3. The transformation of the abstract syntax of the source language into an abstract syntax of the target 

language. Here we introduce variables, free terms, and free formulas. This transformation will be referred 

to as the lifting of a language of zero-order ― only ground terms and ground formulas ― to a language 

of second-order, where variables may range over the elements of a certain universe and over functions 

and predicates on that universe. 

4. The development of an algebra of denotations AlgDen-FT as an adequate generalization of AlgDen-V. 

The concept of adequacy will be explained a little later.  

5. The establishment of such a set of axioms that AlgDen-FT constitutes one of its models. 

We assume that all formalized theories investigated in the sequel will be based on standard inference rules 

sketched in Sec. 2.3. It should also be noticed that our formalized theories will be many-sorted, compared to one-

sort theories investigated in Sec. 2.3 (only one universe). Now, instead of one universe, we have a family of 

carriers of a corresponding algebra of denotations.  

Regarding the problem of axiomatizing Language-FT, there are two basic strategies of building a set of axi-

oms for a lifted language: 

A. We formulate all axioms in Language-FT. In this case, the set of axioms may be quite large, and we have 

to make sure that it is consistent and “sufficiently complete”. The latter practically means that we can 

prove the truth of “sufficiently many” valid formulas.  

B. We define the carriers and constructors of AlgDen-FT in some larger formalized theory, e.g., in an axi-

omatic set theory. In this case, the set of axioms is relatively small and known (from literature) to be 

consistent and complete, but we have to formulate a large number of definitions. And, of course, we must 

enrich our lifted language by introducing new concepts, i.e., new carriers and constructors, to a Language-

AFT of an axiomatic, formalized theory.  

Further research should show which strategy we choose for Lingua-V. 
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In this section, we shall concentrate on steps 3 and 4. Let the source language be given by two algebras with 

a common signature: 

AlgSyn-V = (Sig-V, CarSyn-V, FunSyn-V, carSyn-V, funSyn-V)        abstract syntax of Language-V 

AlgDen-V = (Sig-V, CarDen-V, FunDen-V, carDen-V, funDen-V)      denotations of Language-V 

Sig-V  = (Cn-V, Fn-V, arity-V, sort-V) 

The only assumptions regarding this algebra are the following 

boo       : Cn-V, 
and, or, implies, not : Fn-V; these operators are interpreted as classical connectives, 

carDen.boo = Bool  where Bool = {tt, ff} 

Note that in Lingua-V, we use classical connectives in metaconditions.  

It should be noted that, in addition to carrier Bool, the family of carriers of AlgDen-V may include another 

Boolean carrier, different from Bool, such as BoolE = Bool | Error. The sort boo mentioned above is the sort of 

metaconditions rather than conditions! 

Similar to programming languages, FT-languages can also have an abstract, concrete, or colloquial syntax. 

Here, we primarily use abstract syntax because it provides a convenient framework for abstract algebras. Of 

course, once an abstract syntax of Language-FT is developed, its syntax can be transformed into a concrete or 

colloquial version.  

Assuming that the source algebras of Language-V are given, we build for them two derivative algebras of 

Language-FT: 

AlgSyn-FT = (Sig-FT, CarSyn-FT, FunSyn-FT, carSyn-FT, funSyn-FT)   abs. syntax of Language-FT 

AlgDen-FT = (Sig-FT, CarDen-FT, FunDen-FT, carDen-FT, funDen-FT)         den. of Language-FT 

The transformation from Language-V to Language-FT will be called the lifting of a language, and the FT-

algebras will be called lifted algebras.  

Let’s assume that the abstract-syntax grammar of Language-V is the following: 

Equations generating terms ― one equation for every sort cn : Cn-V with cn ≠ boo: 

ter : Term-V.cn =7 
   fn(Term-V.cn-1,…,Term-V.cn-n) | for all fn : Fn-V with 

arity.fn = (cn-1,…,cn-n) 
                  sort.fn = cn 

One equation generating formulas 

for : Form-V =                   we use Form-V instead of Term-V.boo 
   pn(Term-V.cn-1,…,Term-V.cn-n) | for all pn : Fn-V with 

arity.pn = (cn-1,…,cn-n) 
sort.pn = boo 

   and(Form-V, Form-V)      | 
   or(Form-V, Form-V)      | 
   implies(Form-V, Form-V)     | 
   not(Form-V)         

Of course, for Language-V to be not empty, the set Fn-V of function names must include at least one zero-ary 

functional symbol.  

Since our language does not have variables, it includes only ground terms and ground formulas. It may be said 

to be the language of a zero-order theory. As we know from [6], there exists a unique many-sorted homomor-

phism between our algebras: 

 

7 We write Term.cn rather than Term.cn since the former is regarded as an “indivisible” metavariable in our fixed-point 

equations, rather than as a function that takes a sort name cn as an argument.  
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SEM-V : AlgSyn-V ⟼ AlgDen-V 

that we refer to as the semantics of this language. 

To describe the transformation of AlgSyn-V to AlgSyn-FT, let’s assume that the future signature of FT-

language is the following: 

Sig-FT = (Cn-FT, Fn-FT, arity-FT, sort-FT) 

The basic difference between Language-V and Language-FT is such that the latter includes variables of three 

categories: 

inv : IndVar ― first-order individual variables running over the elements of the carriers of CarDen-V, 

fuv : FunVar ― second-order functional variables running over functions on such elements, 

prv : PreVar ― second-order predicational variables running over predicates on such elements. 

We assume that each individual variable has a sort described by a function: 

sort : IndVar ⟼ Cn-V 

that indicates a carrier carDen-V.cn whose elements may be assigned to that variable in valuations, and that each 

second-order variable has an arity and a sort: 

arity : FunVar ⟼ Cn-Vc* 

sort  : FunVar ⟼ Cn-V 

arity : PreVar ⟼ Cn-Vc* 

sort : PreVar ⟼ {boo} 

The functions of arities indicate the arities of functions/predicates that can be assigned to corresponding variables 

and the functions of sorts ― the sort of their values. Now, with every sort cn : Cn-V, we define a family of 

variables of this sort 

IndVar.cn = {inv  : IndVar  | sort.inv = cn}   
FunVar.cn = {fuv : FunVar  | sort.fuv  = cn} 
PreVar  = {prv : PreVar  | sort.prv = boo} 

For every individual variable, we define a zero-ary constructor that creates this variable: 

civ-cn-inv  : ⟼ IndVar 
civ-cn-inv.() = inv 

Besides, we define two functions that make single-variable terms from variables: 

mk-term-cn.inv = mk-term-cn(inv)  for all inv : IndVar.cn and all cn : Cn-V – {boo] 

Here mk-term-cn is a metaname of a function on strings of characters, whereas mk-term-cn is a concrete string of 

characters, i.e., it stands for itself. Consequently, mk-term-cn(inv) is a string of green characters followed by an 

individual variable and ending with a green bracket.  

From the grammar of AlgSyn-V, we build a grammar of AlgSyn-FT, or ― more precisely ― we build a 

grammar that will indicate that algebra. This new grammar is built from the former one by the following exten-

sions: 

1. adding one equation for each sort-name cn to generate the domain of individual variables of sort cn, 

2. adding to each equation, generating terms of sort cn: 

a. one clause that generates the domain of single-variable terms of sort cn, 

b. for each functional variable fuv : FunVar with sort.fuv = cn one clause to generate a term with 

fuv as the main operation, 

3. adding to the (unique) equation generating formulas: 

a. one clause that generates single-variable formulas, 

b. for each predicational variable prv : PreVar one clause to generate a formula with prv as the main 

predicate, 

c. six clauses with quantifiers ― two for each of the three categories of variables.  
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As we observe, the new grammar contains all the “content” of the previous one and adds some new equations 

(for variables) and additional clauses to the equations that generate terms and formulas. This partly explains our 

earlier claim that Language-FT should be “an adequate generalization” of Language-V. However, this is not 

the only reason supporting that claim.  

The new grammar is the following:  

Equations generating individual variables ― one equation for every sort name cn : Cn-V: 

IndVar.cn =8 
civ-cn-inv-1.() | civ-cn-inv-2.() | … 

Equations generating terms ― one equation for every sort name cn : Cn-V with cn ≠ boo: 

ter : Term-FT.cn =  
   mk-term(IndVar.cn)        | 
   fn(Term-FT.cn-1,…,Term-FT.cn-n)  | for every fn : Fn-V with 

arity.fn = (cn-1,…,cn-n) 
                  sort.fn = cn 

   fuv(Term-FT.cn-1,…,Term-FT.cn-n)  | for every fuv : FunVar with 

arity.fuv = (cn-1,…,cn-n) 
                  sort.fuv = cn 

One equation generating formulas 

for : Form-FT =                  we use Form-FT instead of Term-FT.boo 
   fn(Term-FT.cn-1,…,Term-FT.cn-n)  | for every fn : Fn-V with 

arity.fn = (cn-1,…,cn-n) 
sort.fn  = boo 

   prv(Term-FT.cn-1,…,Term-FT.cn-n) | for every prv : PreVar with 

arity.prv = (cn-1,…,cn-n) 
sort.prv = boo 

   and(Form-FT, Form-FT)      | 
   or(Form-FT, Form-FT)      | 
   implies(Form-FT, Form-FT)     | 
   not(Form-FT)          | 
   (∀𝑖  IndVar) Form-FT       |  

   (∃𝑖  IndVar) Form-FT       | 
   (∀𝑓 FunVar) Form-FT      |  
   (∃𝑓 FunVar) Form-FT      | 
   (∀𝑝 PreVar) Form-FT       |  

   (∃𝑝 PreVar) Form-FT 

In the quantified formulas above, we introduce two quantifiers for each of the three sorts of variables. For exam-

ple, (∀𝑖) is a quantifier for individual variables, hence (∀𝑖 ide) is understood as an individual-variable quantifi-

cation of the individual variable ide. 

Assume that the AlgSyn-FT is implicit in this grammar (see Sec. 2.15 of [6]). At this moment, we may 

identify the common signature of both lifted grammars: 

cn : Cn-FT =  
{IndVar.cn | cn : Cn-V}  | all carriers of individual variables 

Cn-V – {boo}      |  all former names except boo now replaced by Form-FT 
{formula}  

 

8 We do not write IndVar.cn but IndVar.cn since the latter is regarded as an “indivisible” metavariable in our set of fixed-

point equations.  
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Here, IndVar.cn symbolically denotes the name of the carrier IndVar.cn. The set of names of functions is the 

following: 

fun : Fn-FT =  
{civ-cn-inv | cn : Cn-V, inv : IndVar}   |  all names of individual-variable constructors 

{mk-term}            | the name of mk-term 
Fn-V              | all former names (including these with boo sort) 

FunVar             | all functional variables 

  PreVar             | all predicational variables 
{mk-formula}           | 
{and, or, implies, not, ∀i, ∃i, ∀f, ∃f, ∀p, ∃p} 

Here, functional/predicational variables are regarded as the names of functions creating terms/formulas in             

AlgSyn-FT and the denotations of terms/formulas in AlgDen-FT. This will be seen a little later. 

The last step in our lifting process is the generation of AlgDen-FT. To do that, we first define the domains of 

valuations. Let: 

uni : Universe  = U{car.cn | cn : Cn-V} 
vlu : IndValuation  ⊆ IndVar ⟼ Universe 

vlu : FunValuation ⊆ FunVar ⟼ {fun | fun : Universec* ⟼ Universe} 
vlu : PreValuation ⊆ PreVar ⟼ {pre | pre : Universec* ⟼ Bool} 
vlu : Valuation  ⊆ IndValuation | FunValuation | PreValuation 

We assume that the domains of valuations include all total functions on variables which are sort-wise well-formed, 

which means that for every valuation vlu: 

if   inv : IndVar.cn 
then vlu.inv : carDen-V.cn 

if  fuv : FunVar with arity.fuv = (cn-1,…,cn-n) and sort.fuv = cn 
then vlu.fuv : carDen-V.cn-1 x … x carDen-V.cn-n ⟼ carDen-V.cn 

if  prv : PreVar with arity.prv = (cn-1,…,cn-n) 
then vlu.prv : carDen-V.cn-1 x … x carDen-V.cn-n ⟼ carDen-V.boo 

Next, with every sort cn : Cn-FT we associate a corresponding domain of denotations, thus defining the function 

carDen-FT: 

carDen-FT.cn    = Valuation ⟼ carDen-V.cn  for all cn : Cn-V 

carDen-FT.formula  = Valuation ⟼ carDen-V.boo 
carDen-FT.IndVar.cn = IndVal.cn        for all cn : Cn-V, variables are the denotations of  

                           themselves  

In this moment, we are ready to define the interpretation function funDen-FT. We define it case-by-case: 

(1) For every name civ-cn-inv of a variable-creating function, its interpretation is the corresponding variable-cre-

ating function: 

funDen-FT.civ-cn-inv : ⟼ IndVar.cn  i.e. 
funDen-FT.civ-cn-inv.() = civ-cn-inv.() 

(2) For every name mk-term-cn of the term-making function: 

funDen-FT.mk-term-cn : IndVar.cn ⟼ carDen-FT.cn  i.e. 
funDen-FT.mk-term-cn : IndVar.cn ⟼ Valuation ⟼ carDen-V.cn  for all cn : Cn-V 
funDen-FT.mk-term-cn.inv.vlu = vlu.inv 

The denotation of a term that consists of a single individual variable inv is a function that, when applied to a 

valuation vlu, returns the value assigned to that variable in this valuation. 

(3) For every functional name fn : Fn-V with arity.fn = (cn-1,…,cn-n) and sort.fun = cn: 

funDen-FT.fn : carDen-FT.cn-1 x … x carDen-FT.cn-n ⟼ carDen-FT.cn 
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funDen-FT.fn.(den-1,…,den-n).vlu = funDen-V.fn.(den-1.vlu,…,den-n.vlu) 

Note that at the right-hand side of the equation, we refer to the meaning of fn in Language-V. That is the second 

argument to say that AlgDen-FT is an adequate generalization of AlgDen-V.  

(4) For every functional variable fuv : FunVar with arity.fuv = (cn-1,…,cn-n) and sort.fuv = cn: 

funDen-FT.fuv : carDen-FT.cn-1 x … carDen-FT.cn-n ⟼ carDen-FT.cn 
funDen-FT.fuv.(den-1,…,den-n).vlu = vlu.fuv.(den-1.vlu,…,den-n.vlu) 

(5) For the name mk-formula of the formula-making function: 

funDen-FT.mk-formula : IndVar.boo ⟼ carDen-FT.boo  i.e. 

funDen-FT.mk-formula : IndVar.boo ⟼ Valuation ⟼ carDen-V.boo 
funDen-FT.mk-formula.inv.vlu = vlu.inv  

(6) and (7) The cases of the names of predicates and of predicational formulas are analogous to (3) and (4), and, 

therefore, we shall not repeat them. 

The cases concerning propositional operators and quantifiers are routine; therefore, we present just two exam-

ples.  

(8) For conjunction 

funDen-FT.and : CarDen-FT.formula x CarDen-FT.formula ⟼ CarDen-FT.formula 
funDen-FT.and.(den-1, den-2).vlu = funDen-V.and.(den-1.vlu, den-2.vlu) 

where and is a classical two-valued conjunction. 

(9) For a general quantifier 

funDen-FT.∀𝑖 : IndVar x CarDen-FT.formula ⟼ CarDen-FT.formula 
funDen-FT.∀𝑖.(inv, den).vlu = 
 for any ini : Universe, den.(vlu[inv/uni]) = tt ➔ tt 
 true               ➔ ff 

Our definition identifies a unique homomorphism 

SEM-FT : AlgSyn-FT ⟼ AlgDen-FT 

that we call the semantics of Language-TF. Now we can easily prove the last fact that justifies calling Language-

TF an “adequate generalization” of Language-V. First, note that every term or formula of Language-V is a 

(ground) term or formula of Language-FT. The second fact is that for every carrier name cn : Cn-V, every term 

ter : Term-V.cn, and every valuation val : Valuation. 

SEM-FT.cn.ter.val = SEM-V.cn.term. 

In other words, the denotations of terms in Language-V are “compatible” with those in Language-FT.   

At the end of this section, a general observation about our approach to constructing theories and their models 

is appropriate. In typical textbooks of mathematical logic, the language and axioms of a formalized theory are 

presented first, and only then are the associated models examined. However, “a working mathematician” usually 

proceeds in reverse — they construct a model first and often leave the task of its axiomatization to colleagues in 

formal logic departments. That is also our perspective. We start with a denotational model of a programming 

language, where the algebra of syntax defines the language of the theory, and the algebra of denotations represents 

its model. Then, we aim to identify a set of axioms such that our algebra of denotations is one of its models. The 

existence of this model guarantees that our theory is consistent.  

2.5 Formalized Peano’s arithmetic 

Let’s illustrate our method on the example of second-order Peano’s arithmetic, this time seen from an algebraic 

perspective. As AlgDen-V, we chose a standard zero-order model of this theory (only ground terms and ground 

formulas). Let then: 
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nat  : Natural  = {0, 1, 2,…} 
boo : Bool  = {tt, ff} 

with the following functions: 

zer  :         ⟼ Natural;  constant zero 

suc : Natural     ⟼ Natural; suc.nat = nat + 1 
num : Natural     ⟼ Bool;  num.nat = tt iff   nat is a natural number 

equ : Natural x Natural  ⟼ Bool;  equ.(nat-1, nat-2)  iff  nat-1= nat-2 

The signature of this algebra is the following: 

Sig-V = ({nat, boo}, {zer, suc, num, equ}, arity, sort} 

arity.zer  = () 
sort.zer  = nat 

arity.suc  = (nat) 
sort.suc  = nat 

arity.num = (nat) 
sort.num  = boo 

arity.equ  = (nat, nat) 
sort.equ  = boo 

The abstract-syntax algebra of the corresponding Language-V is described by the following grammar: 

ter-V : Term-V =             ground terms 

    zer() | suc(Term-V) 
 
for-V : Form-V =             ground formulas 

    num(Term-V) | equ(Term-V, Term-V) 

To build a grammar of a second-order Language-FT, we first introduce three sets of variables. 

IndVar.nat  = {x, y, z}   individual decimal variables 

IndVar.boo  = {a, b, c}    individual boolean variables 

PreVar   = {P}     one predicational variable 

with 

sort.x  = nat 
… 
sort.a = boo 
… 
sort.P  = boo 
arity.P  = (nat) 

Note that we introduce only one predicational variable and no functional variables. A practical rule in this case 

is such that we introduce only as many second-order variables as we shall need to formulate our axioms.  

With individual variables, we introduce corresponding constructors: 

civ-nat-x : ⟼ {x, y, z} 
civ-nat-x.() = x 
… 

Note that we do not introduce a constructor for P since we do not introduce a domain of second-order variables. 

The abstract syntax of Language-FT is then described by the following grammar: 

inv-FT : IndVar.nat = 
    civ-nat-x.() | civ-nat-y.() | civ-nat-z.()  
 
inv-FT : IndVar.boo = 
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    civ-boo-a.() | civ-boo-b.() | civ-boo-c.()  
 
ter-FT : Term-FT = 
    mk-term(IndVar.nat) | zer() | suc(Term-FT) 
 
for-FT : Form-FT = 
    mk-formula(IndVar.boo) | num(Term-FT) | P(Term-FT) | equ(Term-FT, Term-FT) |  

and(Formula-FT , Formula-FT) | … 

The domain of valuations and the corresponding domains of denotations are the following: 

vlu : Valuation  =   
({x, y, z} ⟼ Natural)    |  

({a, b, c} ⟼ Bool)     |  
{P} ⟼ (Natural ⟼ Bool)   

The domains of denotations: 

carDen-FT.IndVar.nat = IndVar.nat           the denotations of variables are these variables 

carDen-FT.IndVar.boo  = IndVar.boo 

carDen-FT.nat   = TerDen  = Valuation ⟼ Natural     the name of the domain of terms is nat 
carDen-FT.boo   = ForDen  = Valuation ⟼ Bool    the name of the domain of formulas is boo 

Examples of definitions of function in AlgDenFT are the following: 

funDen-FT.civ-nat-x() : ⟼ TerDen           i.e. 
funDen-FT.civ-nat-x.() = x 

funDen-FT.mk-term : IndVar.nat ⟼ TerDen 
funDen-FT.mk-term : IndVar.nat ⟼ Valuation ⟼ Natural 
funDen-FT.mk-term.inv.vlu = vlu.inv 

funDen-FT.suc : TerDen ⟼ TerDen          i.e. 

funDen-FT.suc : TerDen ⟼ Valuation ⟼ Natural 
funDen-FT.suc.ted.vlu = funDen-V.suc.(ted.vlu) 

The signature of the lifted algebra is the following 

Sig-FT = ({nat, boo}, {civ-nat-x() ,…, civ-boo-a() ,…, mk-term,  
zer, suc, num, equ, and, or, not, implies, ∀i, ∃i, ∀p, ∃p}, arity, sort}  

3 Formalizing Lingua-V 

3.1 The grammar of Lingua-V 

Since in [6] conditions and metaconditions were defined by examples only, we have to complete the grammar of 

Lingua-V by corresponding equations. Similarly to the case of Lingua, we shall not attempt to define a fully 

developed “practical language”, but we restrict our attention to a few typical clauses. We shall omit the prefixes 

Abs (for “abstract) or Con (for “concrete”) since we shall now consider only one version of our grammars. 

However, we continue to use postfixes -V and -FT to distinguish between the two languages. The grammar of 

Lingua-V is built by adding to the grammar of Lingua equations corresponding to the following syntactic cate-

gories (we slightly modify the metanames used in [6]): 

con : Con-V     ― conditions 

asr : Asr-V     ― assertions 

sin : SpeIns-V    ― specified instructions 

sde : SpeDec-V   ― specified declarations 

sct : SpeClaTra-V  ― specified class transformations 

spp : SpeProPre-V  ― specified program preambles 
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spr : SpePro-V   ― specified programs 

mco : MetCon-V   ― metaconditions 

Below, we focus on conditions and metaconditions, as the remaining categories are defined in [6].  

The syntax of conditions is similar to that of value expressions with boolean values, with two exceptions: 

• they include several predicates that are not available for value expressions, 

• logical connectives used in compound conditions are Kleene’s rather than McCarthy’s. 

A scheme of an equation defining the category of conditions may be, therefore, the following (cf. Sec. 7.2.4 of 

[6]): 

con : Con-V = 

  duplicates of atomic boolean expressions of Lingua 

con-equal-int(ValExp , ValExp)    |  equal integers 

con-less-int(ValExp , ValExp)    |  less than, integers 

… 
  conditions with predicates that are not available for value expressions 

con-is-typ(Identifier, TypExp)    |  identifier declared as a type constant 

con-var-is-typ(Identifier, TypExp)   |  declared variable of a given type 

con-proc-opened(Identifier, Identifier)  |  opened procedure  

… 
  algorithmic conditions 

   con-left-algorithmic(SpePro-V , Con-V) |  SpePro-V ― specprograms 

   con-right-algorithmic(Con-V , SpePro)  | 
  
  compound conditions with Kleene’s operators 

con-or-k(Con-V, Con-V)      | 
con-and-k(Con-V, Con-V)      | 
con-not-k(Con-V)      

In the case of algorithmic conditions, we have ad hoc transformed the corresponding grammatical equation from 

Sec. 9.2.6 of [6] into a prefix form. A scheme of an equation defining the category of metaconditions may be the 

following: 

mco : MetCon-V = 

  relational metaconditions 

   mco-stronger(Con-V , Con-V)       |  in concrete syntax  

mco-weak-equivalent(Con-V , Con-V)    |  in concrete syntax ⇔ 
mco-less-defined(Con-V , Con-V)     |  in concrete syntax ⊑ 
mco-strong-equivalent(Con-V , Con-V)    |  in concrete syntax ≡ 

  behavioral metaconditions 

   mco-insures-LR(Con-V , Ins)       | 
   mco-resilient(Con-V , SpePro)      |   
   … 
  temporal metaconditions 

   mco-primary(Con-V , MetPro-V)      |  MetPro-V ― metaprograms 
   mco-induced(Con-V , MetPro-V)     | 
   … 
  language-related metaconditions 

   mco-immunizing(Con-V)         | 
   mco-immanent(Con-V)         | 
   … 
  metaprograms 

   mco-metaprogram(Con-V, SpePro-V, Con-V) | 
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compound metaconditions with classical operators 

   mco-and(MetCon-V , MetCon-V)      | 
mco-or(MetCon-V , MetCon-V)      | 
mco-implies(MetCon-V , MetCon-V)     | 
mco-not(MetCon-V) 

3.2 The denotations of Lingua-V 

The algebra of denotations of Lingua-V is a direct extension of AlgDen described in [6] by the carriers corre-

sponding to new syntactic categories and the corresponding constructors. The new carriers are: 

cod : ConDen-V     = State → BoolE 
asd : AsrDen-V    = State → BoolE 
sdd : SpeDecDen-V   = State → State 
sid : SpeInsDen-V   = State → State 
sct : SpeClaTraDen-V  = State → State 
spd : SpeProPreDen-V = State → State 
spd : SpeProDen-V   = State → State 
mcd : MetConDen-V   = {tt, ff} 

The signatures of corresponding constructors can be derived from grammatical clauses of Sec. 3.1, e.g.: 

cod-equal-int     : ValExpDen-V x ValExpDen-V  ⟼ ConDen-V 
cod-less-int      : ValExpDen-V x ValExpDen-V  ⟼ ConDen-V 
… 
cod-is-typ       : Identifier x TypExpDen-V   ⟼ ConDen-V     
cod-var-is-typ     : Identifier x TypExpDen-V   ⟼ ConDen-V   
cod-proc-opened   : Identifier x Identifier     ⟼ ConDen-V 
… 
con-left-algorithmic   : SpeProDen-V x ConDen-V  ⟼ ConDen-V 
con-right-algorithmic  : ConDen-V x SpeProDen-V   ⟼ ConDen-V 

and similarly for the denotations of metaconditions: 

mcd-stronger     : ConDen-V x ConDen-V   ⟼ MetConDen-V  i.e., 
mcd-stronger     : ConDen-V x ConDen-V   ⟼ {tt, ff} 

mcd-weak-equivalent  : ConDen-V x ConDen-V   ⟼ {tt, ff} 
mcd-less-defined   : ConDen-V x ConDen-V   ⟼ {tt, ff} 

mcd-strong-equivalent : ConDen-V x ConDen-V   ⟼ {tt, ff} 

mcd-insures-LR    : ConDen-V x InsDen-V    ⟼ {tt, ff} 

mcd-resilient     : ConDen-V x SpeProDen-V  ⟼ {tt, ff} 
mcd-primary     : ConDen-V x MetPro-V    ⟼ {tt, ff} 

mcd-induced     : ConDen-V x MetPro-V    ⟼ {tt, ff} 

Formalized definitions of these constructors can be easily inferred from their definitions in Sec. 9.2 and Sec. 9.3 

of [6]. 

4 Defining Lingua-FT 

4.1 Individual variables in Lingua-FT 

Proceeding to Lingua-FT, we define, first, the domains of variables. Let’s start from individual variables that for 

every sort of Lingua-V we define as a separate carrier. For simplicity, we write the corresponding grammatical 

equations in a concrete-syntax style: 
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ide : IdeVar-FT   = {ide,…}                variables corresponding to identifies, 

vex : ValExpVar-FT  = {vex,…}             variables corresponding to value-expressions,  

rex : RefExpVar-FT  = {rex,…}          variables corresponding to reference-expressions, 

sin : SpeInsVar-FT   = {sin,…}           variables corresponding to specinstructions, 

con : ConVar-FT   = {con, prc, poc,…}         variables corresponding to conditions, 

… 

mec : MetConVar-FT = {mec,…}              variables corresponding to metaconditions. 

All these individual variables may be “decorated” by arbitrary prefixes and postfixes. Note that these variables 

are printed in underlined to distinguish them from non-underlined metavariables running over the elements of 

IdeVar-FT, such as ide, vex, sin, etc. As we will see, this distinction is important.  

4.2 Functional and predicational variables in Lingua-FT 

Whereas the introduction of individual variables is, in a sense, “unavoidable” ― for every carrier name cn : Cn-
VT, we introduce one carrier of variables ― the situation with non-individual variables is different: 

• they have not only sorts but also arities and, therefore, within every sort of such variables we may have a 

variety of variables with different arities, 

• which second-order variables we shall need, will be seen only when we start writing axioms.  

We postpone, therefore, the introduction of second-order variables till the moment when we come to building a 

set of axioms. A case, where we will certainly need second-order variables, are second-order axioms for integers. 

We must ensure that all the models of our formalized theory includes standard models of integers, which is 

necessary to prove the termination properties of programs.  

4.3 Terms in Lingua-FT 

According to the rule described in Sec. 2.4, grammatical equations of Lingua-FT are created from corresponding 

equations of the source language by adding to each of them two categories of clauses: 

1. one clause for the creation of single-variable terms with individual variables, 

2. one clause for every functional variable that creates a term with this variable representing the root opera-

tion, 

3. one clause for every predicational variable that creates a formula with this variable representing the root 

predicate. 

Since we have not introduced second-order variables so far, the modification of grammatical equations is limited 

to point 1. We also slightly modify the (green) names of constructors to make them more intuitive9, and we use 

individual variables associated with syntactic categories as metavariables running over these categories (cf. Sec.  

2.1.1). Let’s see a few examples (cf. Sec. 7.2 in [6]): 

value expressions 

vex : ValExp-FT =  
   vex-make-vex(ValExpVar-FT)      |  single-variable term 

vex-bo(BooleanSyn-FT)        | 
   vex-in(IntegerSyn-FT)         | 
   vex-re(RealSyn-FT)          | 
   vex-te(TextSyn-FT)          | 
   vex-variable(Ide-FT)          |   single-identifier value-expression 
   vex-attribute(ValExp-FT , Ide-FT)     |  
   vex-call-fun-pro(Ide-FT, Ide-FT, ActPar-FT)  | 
   vex-add-int(ValExp-FT , ValExp-FT)    |  

vex-less-int(ValExp-FT , ValExp-FT)    | 

 
9 For instance, we replace the name prefix ved- (value-expression denotation) by vex- (value expression). 
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vex-or-m(ValExp-FT , ValExp-FT)     |  McCarthy’s alternative 
vex-create-li(ValExp-FT)        | 
vex-get-from-rc(ValExp-FT , Ide-FT)    | 
…   

Note that now we have to suffix all the names of syntactic domains with -FT, since they are different than those 

in Lingua-V.   

specified instructions 

sin : SpeIns-FT = 

   sin-make-sin(SpeInsVar-FT)            | single-variable term 

   sin-make-asr(Con-FT)              |  assertions10 

sin-skip-ins()                  | 
sin-assign(RefExp-FT , ValExp-FT)         | 
sin-call-imp-pro(Ide-FT , Ide-FT , ActPar-FT , ActPar-FT)  | 
sin-call-obj-con(Ide-FT , Ide-FT , ActPar-FT)      | 
sin-if(ValExp-FT , SpeIns-FT , SpeIns-FT)      | 
sin-if-error(ValExp-FT , SpeIns-FT)         | 
sin-while(ValExp-FT , SpeIns-FT)          | 
sin-compose-ins(Ins-FT , Ins-FT) 

 identifiers 

ide : Ide-FT = 

   IdeVar-FT  | 
Identifier 

We recall that, according to our earlier convention, the elements of IdeVar-FT are printed in black Arial, and the 

elements of Identifier are printed in green Arial Narrow. We also bring to the attention of our readers that identifiers 

in Lingua-FT belong to the category of terms. 

 conditions 

con : Con-FT = 

   con-make-con(ConVar-FT )      | variables 

   con-or-k(Con-FT , Con-FT)      | Kleene’s alternative 

   con-less-int(ValExp-FT , ValExp-FT)   | 
   con-is-value(ValExp-FT)       | 
   con-is-free(Ide-FT)         | 
   con-left-algorithmic(SpeIns-FT , Con-FT)  | 
   con-right-algorithmic(Con-FT , SpePro-FT) | 

… 

Examples of ground terms-FT are the following (for simplicity, we omit the name of identifier-creating and con-

stant-creating constructors): 

sin-assign(x, vex-divide-re(1, z)) 
vex-less(y, 0) 
sin-while(vex-less-int(x, 0), sin-assign(x, vex-add-int(a, 1))) 
sin-skip-ins 

and examples of free terms are the following 

sin-assign(rex, vex-divide-re(vex-1, vex-2)) 
vex-less(vex, 0) 
sin-while(vex-less-int(vex-1, vex-2), sin-assign(rex, vex-add-int(vex-3, 1))) 

 
10 Our reader may guess why we abbreviate “assertion” as “asr” rather than as “ass”. 
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4.4 Formulas in Lingua-FT 

Formulas in Lingua-FT are metaconditions and their patterns, e.g.: 

mec : MetCon-FT =  
mec-make-mec(MetConVar-FT) 
mec-stronger(Con-FT ,  Con-FT)      | 

 mec-weakly-equivalent(Con-FT , Con-FT)    | 
 mec-less-defined(Con-FT , Con-FT)     | 

mec-strongly-equivalent(Con-FT , Con-FT)   | 
mec-insures LR(Con-FT , SpeIns-FT)     | 
mec-hereditary(Con-FT , MetPro-FT)     | 
mec-immunizing(Con-FT)          | 
mec-metaprogram(Con-FT , SpePro , Con-FT) | 
… 
mec-and(MetCon-FT , MetCon-FT)      | classical conjunction    
mec-or(MetCon-FT , MetCon-FT)      |    
mec-implies(MetCon-FT , MetCon-FT)     |    
mec-not(MetCon-FT)    

We recall that the logical operators in the above equations are 2-valued classical connectives and, therefore, we 

write them without suffixes  -m or -k. Examples of ground formulas in our theory are the following (for conven-

ience, we write them in concrete syntax): 

√𝑥
2

 > 2  x > 4 

or 

pre nni(x, k) and-k n+1 ≤ M: 
x := 0; 
while x+1 ≤ n 

do 
x := x+1  

od 
post x = n  

In turn, examples of free formulas, written in concrete syntax, are metaprogram construction rules such as 

pre sin @ con 
 sin 
post con 

or 

pre prc-1: spr-1 post poc-1 
pre prc-2: spr-2 post poc-2 
poc-1  prc-2 

pre prc-1: spr-1;                       spr-2 post poc-2 
pre prc-1: spr-1; asr poc-1 rsa; spr-2 post poc-2 
pre prc-1: spr-1; asr prc-2  rsa; spr-2 post poc-2 

We recall that above the line and below the line, we have classical conjunctions of formulas, and the vertical 

arrow represents classical implication. Another example of a free formula in Lingua-FT may be 

(mec1 and mec2) implies mec1  

Of course, all these formulas are valid.  
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4.5 The denotations of Lingua-FT 

The algebra of denotations of Lingua-FT can be “algorithmically” derived from the algebra of Lingua-V in a 

way described in Sec. 2.4. In this section we only sketch a way of doing this. Let’s start from valuations: 

uni : Universe   = IdeDen-FT | TypExpDen-V | RefExpDen-V | ValExpDen-V | … 
vlu : IndValuation  ⊆ IndVar ⟼ Universe 
vlu : FunValuation ⊆ FunVar ⟼ {fun | fun : Universec* ⟼ Universe} 
vlu : PreValuation ⊆ PreVar ⟼ {pre | pre : Universec* ⟼ Bool} 
vlu : Valuation  ⊆ IndValuation | FunValuation | PreValuation 

Every valuation vlu is sort-wise well-formed, e.g.: 

if   vex   : ValExpVar-FT 
then vlu.vex : ValExpDen-V 

At this moment, we do not introduce 2nd-order variables. The examples of carriers of denotations in Lingua-FT 

are the following: 

ved : ValExpDen-FT = Valuation ⟼ ValExpDen-V 
red : RefExpDen-FT = Valuation ⟼ RefExpDen-V 
ind  : InsDen-FT   = Valuation ⟼ InsDen-V 

spd  : SpeProDen-FT = Valuation ⟼ SpeProDen-V 
ide : IdeDen-FT   = Ide-FT 
cod : ConDen-FT   = Valuation ⟼ ConDen-V 
mcd : MetConDen-FT = Valuation ⟼ MetConDen-V 

An example of a constructor of FT-denotations may be the following: 

ind-assign-ft : RefExpDen-FT x ValExpDen-FT ⟼ InsDen-FT    i.e. 

ind-assign-ft : RefExpDen-FT x ValExpDen-FT ⟼ Valuation ⟼ InsDen-V 
ind-assign-ft.(red, ved).vlu = ind-assign-v.(red.vlu, ved.vlu)  

where ind-assign-v is a denotational constructor of instructions from Lingua-V. Another exemplary constructor 

builds the denotation of a free metaprogram formula: 

mcd-metaprogram-ft : ConDen-FT x SpeProDen-FT x ConDen-FT ⟼ MetConDen-FT  i.e. 
mcd-metaprogram-ft : ConDen-FT x SpeProDen-FT x ConDen-FT ⟼ Valuation ⟼ {tt, ff} 
mcd-metaprogram-ft.(cod-1, spd, cod-2).val =  
 mcd-stronger.(cod-1.val, con-left-algorithmic.(spd.val, con-2.val)) 

or, in the metanotation used in Sec. 9.2.7 and Sec. 9.3.2 of [6]: 

 cod-1.val  (spd.val)@(con-2.val) 

5 The theory of denotations of Lingua-V 

5.1 Introductory remarks  

As was mentioned in Sec. 2.1, every formalized theory has three fundamentals: 

1. a formalized language, 

2. a set of axioms, 

3. a set of inference rules. 

In this paper, we explore the general task of developing a formalized theory of denotations (D-theory) for a given 

(source) programming language for validating programming. We take Lingua-V as an example of such a lan-

guage, but we hope that our exercise with Lingua-V will indicate a general method of building a formalized 

theory of denotations for an (almost) arbitrary programming language with a denotational model.  
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Let’s assume that the denotational model of our source language is represented by two similar algebras, Al-

gSyn-V and AlgDen-V, with a homomorphism (semantics) between them (cf. Sec. 2.4). Our goal is to construct 

such a theory whose language includes AlgSyn-V and whose set of models includes AlgDen-V. We shall try to 

differentiate between Lingua-V-dependent and Lingua-V-independent elements of our target theory.  

Since our theory should serve the development of correct metaprograms, our program-construction rules 

should be represented in that theory. Many of them will be included as axioms or lemmas, but some can’t be 

expressed in that way. They will be represented by some nonstandard inference rules.  

5.2 Denotation-oriented axioms 

5.2.1 Three categories of axioms 

Simplifying a little, we may say that our theory of denotations will describe properties of mathematical beings of 

three categories: 

• abstract mathematical entities such as sets, functions, integers, reals, booleans, etc., 

• values generated by expressions and stored in states such as integer values, array values, list values, ob-

jects, etc., 

• the denotations of programs and of their components, such as the denotations of expressions, of declara-

tions, of instructions, etc. 

We will, therefore, have three categories of axioms and lemmas. In this paper, we will concentrate on the third 

of them, as it is the most language-dependent. We also expect that these axioms and lemmas will be mostly 

“explored” by the program composer rather than by the theorem prover. 

5.2.2 Program-independent properties of metaconditions 

Dependencies between metapredicates 

(con1 ≡   con2)  iff   ((con1 ⊑ con2)   and  (con2 ⊑ con1)) 
(con1    con2)  iff   ((con1  con2)  and  (con2  con1)) 
(con1  ≡   con2)  implies  (con1  con2) 

Definitions of ternary metapredicates 

(con1  ≡ con2   whenever con)  iff   ((con and-k con1)  ≡  (con and-k con2)) 
(con1  con2  whenever con)  iff   ((con and-k con1)  (con and-k con2)) 
(con1  con2  whenever con)   iff   ((con and-k con1)   (con and-k con2)) 

Relations ≡ and  are equivalences in the set of conditions 

con ≡ con 
(con1 ≡ con2) implies (con2 ≡ con1) 
… 

Relation ≡ is a congruence for and-k, or-k and not-k 

(con1 ≡ con2) implies ((con and-k con1) ≡ (con and-k con2)) 
… 

Relation  is a congruence for and-k and or-k 

(con1  con2) implies ((con and-k con1)  (con and-k con2)) 
… 

Operators and-k and or-k are strongly and weakly commutative 

(con1 and-k con2)  ≡ (con2 and-k con1) 
(con1 or-k   con2)  ≡ (con2 or-k   con1) 
(con1 and-k con2)  (con2 and-k con1) 



Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V          30 
 

(con1 or-k   con2)  (con2 or-k   con1) 

Operator and-k is strongly and weakly left-hand-side and right-hand-side distributive wrt to or-k and vice 

versa 

(con1 and-k (con2 or-k con3))   ≡  ((con1 and-k con2)  or-k   (con1 and-k con3)) 
(con1 or-k    (con2 and-k con3)) ≡  ((con1 or-k   con2)  and-k (con1 or-k   con3)) 
((con2 or-k con3)  and-k con1)   ≡  ((con2 and-k con1)  or-k   (con3 and-k con1)) 
… 

De Morgan’s laws for and-k and or-k and for the negation of quantifiers are satisfied with strong equiva-

lence and weak equivalence 

not (con1 and-k con2)  ≡  (not(con2) or-k not(con1)) 
not (con1 and-k con2)    (not(con2) or-k not(con1)) 
… 

The relationship between the three implications: 

error-sensitive(con1) and ((con1 implies-k con2) ≡ NT)  implies (con1  con2)) 

A plain-English wording of this rule is the following:  

If con1 is error sensitive and con1 Kleene’s implies con2, then (classical implication) con1 is stronger than 

con2.  

5.2.3 Behavioral metaconditions 

In this group, we show three examples of axioms: 

 

different(ide1, ide2)  

(ide1 is free) irrelevant for (let ide2 be tex) 

 

different(ide1, ide2) 

(ide1 is tex1) irrelevant for (let ide2 be tex2) 

 

pre prc : sin post poc 
con irrelevant for sin 

pre prc and-k con : sin post poc and-k con 

 

In all three cases, we have used a diagrammatic notation that improves the readability of formulas. Formally, in 

all three cases, we are dealing with Lingua-FT implicative formulas. For instance, the formula corresponding to 

the third lemma is the following: 

((pre prc : sin post poc) and (con irrelevant for sin)) implies (pre prc and-k con : sin post poc and-k con) 

We assume that the ad hoc introduced formula different(ide1, ide2) is satisfied for a valuation vlu iff vlu.ide1 ≠ 
vlu.ide2, where ≠ compares two strings of characters. Of course, to use this formula in our formalized theory, we 

have to characterize it axiomatically. One such axiom will be 

not different(ide, ide). 

However, as we will see in Sec. 6.4.4.2, the axiomatization of different may be replaced by an “implemented” 

procedure that compares two texts. For the denotation of irrelevant, see Sec. 9.3.4 of [6]. 
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5.2.4 Temporal metaconditions 

See Sec. 9.3.5 of [6].  

not(ide is free) hereditary in mpr 
(ide is free) co hereditary in mpr 
(ide is tex) hereditary in mpr 

5.2.5 Declarations 

See Sec. 9.4.4 of [6].  

Rule for variable declaration 

pre (ide is free) and-k (tex is type) 
let ide be tex tel   

post var ide is tex 

Rule for an abstract attribute declaration 

pre (ide-at is free) and-k (ide-cl is class) and-k (tex is type) : 
let ide-at be tex with yex as pst tel in ide-cl 

post att ide-at is tex in ide-cl as pst 

Rule for a type constant declaration 

pre (ide-tc is free) and-k (ide-cl is class) and-k (tex is type) : 
set ide-tc be tex tes in ide-cl 

post ide-tc is tex 

Rule for an imperative pre-procedure declaration 

pre (ide-pr is free) and-k (ide-cl is class) 
proc ide-pr (val my-fpc-v ref my-fpc-r) my-body in ide-cl; 

post pre-proc ide-pr (val my-fpc-v ref my-fpc-r) my-body imperative in ide-cl 

Rule for a declaration of a funding class  

pre : (ide-cl is free) and-k (cli is class) 
class ide-cl parent cli with skip-ctr ssalc   

post ide-cl child of cli 

Rule for class declaration 

pre prc                                    : class ide parent cli with skip-ctr ssalc    post pa-poc 
pre pa-poc                             : ctr-1 in ide   post (pa-poc and-k cr-poc-1) 
pre (pa-poc and-k cr-poc-1)  : ctr-2 in ide   post (pa-poc and-k cr-poc-1 and-k cr-poc-2) 
... 
 
pre prc: 

class ide parent cli with ctr-1; … ; ctr-k ssalc 
post pa-poc and-k cr-poc-1 and-k cr-poc-2 and-k … 

Here we have a scheme of an axiom whose parameter is the sequence of class transformation variables 

ctr-1; … ;ctr-k  

in the class declaration.  

Rule for the opening of procedures 

pre 
 pre-proc ide-pr-11 (val fpc-v-11 ref fpc-r-11) body-11 imperative in ide-cl-1 and-k 

pre-proc ide-pr-12 (val fpc-v-12 ref fpc-r-12) body-12 imperative in ide-cl-1 and-k 
… 
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pre-proc ide-pr-21 (val fpc-v-21 ref fpc-r-21) body-21 imperative in ide-cl-2 and-k 
pre-proc ide-pr-22 (val fpc-v-22 ref fpc-r-22) body-22 imperative in ide-cl-2 and-k 
… 
open procedures 

post  
ide-cl-1.ide-pr-11 opened and-k 
ide-cl-1.ide-pr-12 opened and-k 

 … 
ide-cl-2.ide-pr-21  opened and-k 
ide-cl-2.ide-pr-22  opened and-k 

 … 

Here, as well, we have a scheme of an axiom, and this time the parameter is the number of pre-procedure decla-

rations.  

5.2.6 @-tautology rule 

There is only one rule in this group (Sec. 9.4.6.2 of [6]): 

pre sin @ con : 
 sin 
post con 

5.2.7 Some universal implicative rules  

See Sec. 9.4.4 of [6]. 

Rule for a final composition 

pre prc                                      : spp                            post (de-con and-k sp-con) 
pre (de-con and-k sp-con)       : open procedures post (de-con and-k op-con and-k sp-con) 
pre (de-con and-k op-con and-k sp-con) : sin            post (de-con and-k op-con and-k si-con) 

pre prc:  
  spp ; open procedures ; sin  

post (de-con and-k op-con and-k si-con) 

Rule for strengthening preconditions  

pre prc : spr post poc 
prc-1  prc 

pre prc-1 : spr post poc 

Rule for weakening postconditions 

pre prc : spr post poc 
poc  poc-1 

pre prc : spr post poc-1 

Rule for conjunction and disjunction of conditions 

pre prc-1 : spr  post poc-1 
pre prc-2 : spr  post poc-2 

pre (prc-1 and-k prc-2) : spr  post (poc-1 and-k poc-2) 
pre (prc-1 or-k prc-2)    : spr  post (poc-1 or-k poc-2) 
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Rule for the propagation of an irrelevant condition 

pre prc: spr post poc 
con irrelevant for spr 

pre (prc and-k con) : spr post (poc and-k con) 

5.2.8 Implicative rules for structural instructions 

Rule for sequential composition 

pre prc-1: spr-1 post poc-1 
pre prc-2: spr-2 post poc-2 
poc-1  prc-2 

pre prc-1: spr-1;                         spr-2 post poc-2 
pre prc-1: spr-1; asr poc-1 rsa; spr-2 post poc-2 
pre prc-1: spr-1; asr prc-2  rsa; spr-2 post poc-2 

Rule for conditional branching if-then-else-fi 

pre (prc and-k vex)           : sin1 post poc 
pre (prc and-k (not-k vex)) : sin2 post poc 
prc  (vex or-k (not-k vex)) 

pre prc : if vex then sin1 else sin2 fi post poc 

Rule for loop while-do-od 

(1) pre (inv and-k vex) : sin post inv 
(2) inv insures LR of asr vex rsa ; sin 
(3) prc  inv 
(4) inv  (vex or-k (not-k vex)) 
(5) inv and-k (not-k vex))  poc 

pre prc : asr inv rsa ; while vex do sin od post poc 

5.3 Inference rules 

5.3.1 Not all construction rules are expressible as axioms 

Theorems and lemmas formulated in the intuitive theory of program denotations outlined in Sec. 9 of [6] were 

expressed in MetaSoft ― a dialect of a general language of mathematics. In particular, program-construction 

rules like, e.g., 

pre ide := vex @ con : 
 ide := vex                                 (5.2.1-1) 
post con 

were expressed in this language, where ide, vex, and con denote arbitrary identifiers, value expressions, and 

conditions, respectively. From this rule, we can derive, i.e., prove its soundness, a new one: 

pre con[ide/vex] and-k type-compatible(ide, vex): 
 ide := vex                                 (5.2.1-2)  
post con 

where con[ide/vex] denotes con with all free occurrences of ide replaced by vex and type-compatible(ide, vex) 
is a condition satisfied if ide and vex are of the same type (see Sec. 5.3.4.1). Both these rules are lemmas proved 

on the ground of the intuitive theory of the denotations of Lingua-V.  
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Let’s assume now that we want to have these rules as valid formulas (lemmas) in the repository of our ecosys-

tem. A valid formula corresponding to the first rule would be the following: 

pre ide := vex @ con : 
 ide := vex                                 (5.2.1-3) 
post con 

Note the difference between (5.2.1-1) and (5.2.1-3). Whereas in the former ide, vex and con represent syntactic 

components of a metaprogram written in Lingua-V, in the latter ide, vex and con are concrete variables in 

Lingua-FT. They represent themselves, i.e., strings of three underlined characters. Using the inference rule of 

substitution, vex may be replaced by a value-expression-term ide + 1, thus getting a new lemma: 

pre ide := ide + 1 @ con : 
 ide := ide + 1  
post con 

which is, again, a valid formula in D-theory.  

Consider now (5.2.1-2). This MetaSoft lemma can’t be “transliterated” into a valid formula in Lingua-FT, 

since there is no term in this language that would correspond to con[ide/vex]. In this case, our MetaSoft lemma 

has to be introduced into D-theory as a nonstandard inference rule (see Sec. 5.3). 

5.3.2 Three categories of inference rules 

From the perspective of our future ecosystem, inference rules are used to create new lemmas, which are subse-

quently stored in the repository. In our approach, we shall distinguish between three categories of inference rules: 

• basic rules     ― such as substitution, detachment, adding a general quantifier, etc. , 

• standard rules    ― rules derivable from axioms,  

• nonstandard rules  ― rules non-derivable from implicative axioms. 

Since the first category of rules was discussed in Sec. 2.3, we shall now concentrate on the two remaining ones. 

In these investigations, we shall assume that in writing 

|- mec 

we mean that metacondition mec is in the repository. This notation is conformant with our assumption that all 

metaconditions stored in the repository must be either (mutually consistent) axioms or (valid) lemmas. For sim-

plicity, all of them will be referred to as “lemmas”.  

5.3.3 Standard inference rules 

Every implicative valid formula induces an inference rule, i.e., may be used as such a rule. This fact is formally 

described by the following (meta) theorem: 

Theorem 5.3.3-1 If mec1 and mec2 are metaconditions in Lingua-FT and 

|- mec1 implies mec2 

then the following inference rule is sound: 

|- mec1 

|- mec2                                 ■ 

In other words, if mec1 implies mec2, and mec1 are in the repository, then we can also put mec2 into the 

repository. Note that mec1 and mec2 denote formulas, rather than variables, in Lingua-FT. They are variables 

in MetaSoft. 

The proof is immediate by the rule of detachment.   

We use the color red in this theorem to distinguish inference rules from program construction rules. The former 

are rules of inferring new lemmas, whereas the latter are just formulas. Note also that in our theorem, mec1 and 
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mec2 are metaformulas, rather than variables in Lingua-FT. A different wording of our theorem may be the 

following: 

Theorem 5.3.3-1a If 

mec1 

mec2  

is a sound program-construction rule (is a formula in the repository) then 

|- mec1 

|- mec2   

is a sound inference rule.                             ■ 

Most frequently, our program construction rules have conjunctions of formulas above the line, i.e., are of the 

form: 

mec-1 and 
…      and 
mec-n 

mec  

In this case, to derive |- mec using our theorem, we should have 

|- (mec-1 and … and mec-n)  

in the repository, whereas we usually have all the mec-i’s separately. To put their conjunction into the repository, 

we make sure that the formula  

mec-1 implies (mec-2 implies (mec-1 and mec-2)) 

in in the repository ― it should be there as a tautology ― and then using substitution and detachment we derive 

mec. In this way we have proved next theorem  

Theorem 5.3.3-2 If 

mec-1 and 
…      and 
mec-n 

mec  

is in the repository, then the following inference rule is sound: 

|- mec-1 
…     
|- mec-n 

|- mec                                  ■ 

As a consequence of this theorem, from every sound program-construction rule expressed by metaconditions, we 

can derive a corresponding sound inference rule. An example of such a rule may be the following: 

|- pre prc : spr post poc 
|- prc-1  prc 

|- pre prc-1 : spr post poc 

5.3.4 Nonstandard inference rules 

5.3.4.1 Assignment-instruction inference rule 

As we have already noted in Sec. 5.2.2, not all program construction rules can be expressed as formulas in Lin-

gua-FT. In such a case, we shorten the way 
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program-construction rule → metacondition →  inference rule,  

to 

program-construction rule → inference rule.  

Our first example is the derivation of a rule expressed by a metatheorem that ensures the correctness of all met-

aprograms of the following form: 

pre type-compatible(ide, vex) and-k con[ide/vex] : 
 ide := vex                                (5.3.4.1-1) 
post con 

To prove that, we start from a lemma that we should have in our repository: 

pre sin @ con : 
 sin 
post con 

from which, by substitution, we derive the next lemma: 

pre ide := vex @ con : 
 ide := vex 
post con 

Now, we want to transform the algorithmic precondition into a non-algorithmic one. To do this, we must move 

out of the level of Lingua-FT and continue our reasoning on a MetaSoft level. Initially, based on the rule of 

substitution, we may derive the following Lingua-V-level rule, which is, in fact, a scheme of a rule. 

First assignment rule: For each identifier ide, value expression vex, and condition con, the following metapro-

gram is correct: 

pre ide := vex @ con : 
 ide := vex 
post con 

Here, we have replaced underlined FT-variables by not-underlined metavariables that run over concrete ground 

identifiers, value expressions, and conditions. Note ― concrete, ground, but arbitrary.  

Now, to eliminate @ from the precondition, we apply the following nonstandard rule: 

Second assignment rule: For each identifier ide, value expression vex, and condition con, the following meta-

condition is satisfied: 

type-compatible(ide, vex) and-k con[ide/vex]  (ide := vex @ con) 

where con[ide/vex] denotes condition con where all free occurrences of ide were replaced by vex.  

We skip a formal definition of con[ide/vex], which must refer to the recursive definition of the syntax of 

conditions. Note that in this case, ide is a value variable in con. 

The denotation of the ad-hoc introduced predicate type-compatible is defined as follows: 

type-compatible(ide, ved).sta = 
 is-error.sta       ➔ error.sta 
 ved.sta = ?       ➔ ?  

ved.sta : Error      ➔ sta ◄ ved.sta 
let 

((cle, pre, cov), (obn, dep, st-ota, sft, ‘OK’)) = sta 
  val                = ved.sta 
  (tok, (typ, re-ota))           = obn.ide 
 re-ota ≠ $ and re-ota ≠ st-ota ➔ sta ◄ ‘reference not visible’ 
 not ref VRA.cov val    ➔ sta ◄ ‘incompatibility of types’ 
 true          ➔ (tt, ‘boolean’) 
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The proof of the second rule requires a rather laborious argument carried out by induction on the syntactic defi-

nition of conditions in Lingua-V. Our excuse for skipping this proof is that we have not (yet) fully defined the 

syntax of conditions. A practical lesson derived from this exercise is that our conditions should be defined in a 

way that makes our rule sound. 

Using this rule and the rule of strengthening preconditions, we may finally derive the third rule. 

Third assignment rule: For each identifier ide, value expression vex, and condition con, the following metapro-

gram is correct: 

pre con[ide/vex] and-k type-compatible(ide, vex): 
 ide := vex 
post con 

This rule is nonstandard since it is not an FT-formula: 

• the script “con[ide/vex]” is not a condition, 

• the rule is, in fact, a scheme of a rule where ide, con, and vex are metavariables quantified by a general 

quantifier. 

From this metatheorem, we derive the following nonstandard inference rule  

|- true 

|- pre con[ide/vex] and-k type-compatible(ide, vex): 
     ide := vex 
   post con 

In this case, the use of the sign |- below the line does not denote the validity of a formula, since the script under 

|- is not a formula, but the fact that once ide, vex, con and con[ide/vex] are replaced by concrete terms (although 

not necessarily ground), then the formula generated in this way may be stored in the repository.   

5.3.4.2 The removal of an assertion 

The next nonstandard rule expresses the fact that the removal of an assertion from a correct metaprogram with 

an error-sensitive postcondition does not violate the correctness of this program (for error sensitivity see Sec. 

9.2.1 of [6]):  

|- pre prc : head ; asr con rsa ; tail post poc 
|- error-sensitive(poc) 

|- pre prc : head ; tail post poc 

Here, we assume that the phrase above the line represents a metaprogram; hence, the phrase below the line also 

represents a metaprogram.  

5.3.4.3 The replacement of a condition in an assertion by a weakly equivalent one 

This rule may be described by the following diagram 

|- pre prc : head ; asr con1 rsa ; tail post poc 
|- con1  con2 
|- error-sensitive(poc) 

|- pre prc : head ; asr con2 rsa ; tail post poc 

This rule is to be understood in a similar manner to the former. 
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5.3.4.4 The call of an imperative procedure 

|- prc-call   myProc (val fpa-v ref fpa-r) my-body imperative in MyClass 
|- prc-call   (pass actual val apa-v ref apa-r to formal val fpa-v ref fpa-r with MyClass) @ prc-body 
|- prc-call   procedure MyClass.myProc is opened 

|- prc-call   coe is current  
|- prc-body   my-body @ poc-body  
|- poc-body  fpa-r well-valued in coe 
|- poc-body[fpa-r/apa-r]  poc-call  

|- pre prc-call : 
   call MyClass.myProc (val apa-v ref apa-r) 

    post poc-call 

Other examples of nonstandard rules may be the following: 

1. the replacement of a boolean value-expression in a program by a strongly equivalent expression, 

2. the introduction of an assertion block into a program (see Sec. 9.5.1 of [6]), 

3. adding a register identifier to a program (see Sec. 9.5.3 of [6]).  

This list is certainly not complete. 

6 Denotational models of ecosystems  

6.1 Introductory remarks 

In this section, we outline our vision of an ecosystem that can assist programmers developing programs in Lingua-

V (or a similar language). We do not attempt to provide a comprehensive description of such a system, but rather 

aim to outline the primary directions of its development. We illustrate our general investigations with a few 

examples.  

6.2 Repositories and actions 

An ecosystem can be viewed as a programming language ― we shall call it Lingua-E ― where repositories play 

the roles of states, and instructions, referred to as actions, represent functions that modify repositories. In Sec. 6, 

we shall describe only the algebra of denotations AlgDen-E, since the derivation of syntax is routine. We start 

by formalizing the concept of a repository, and to do that, we introduce three domains: 

car : Character  = {a, b, c, …, A, B, C,…, 0, 1,…,9, (, ), …} 
nam : Name    = Characterc+           the names of elements stored in repository 

rep : Repository  = Name ⟹ (ValMetCon-FT | Con-FT). 

We assume that all metaconditions stored in repositories are valid, although they may be ground or free. We also 

store conditions in repositories to allow for using their short names in place of long conditions (examples in Sec. 

6.5). An example of a ground metacondition to be stored in a repository may be a concrete metaprogram like 

pre (x is free) and-k (integer is type) 
let x be integer tel   

post var x is integer  

whereas an example of a corresponding free metacondition would be 

pre (ide is free) and-k (tex is type) 
let ide be tex tel   

post var ide is tex 

This metacondition represents an atomic standard program-construction rule as described in Sec. 9.4.4 of [6].  
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6.3 Carriers of the algebra of denotations 

The algebra of denotations AlgDen-E will have the following carriers: 

tex : Text    = Characterc+   
nam : Name    = Text     

svd : SubVecDen  = IndVal-FT ⟹ Text            the denotations of substitution vectors  

acd : ActDen   = Repository ⟼ Repository | Error             the denotations of actions 

inv : IndVar-FT  =           individual variables of Lingua-AFT defined in Sec. 4.1 

Following our categorization of inference rules (Sec. 5.3.1), we split actions into three categories: 

• basic actions     ― actions derivable from basic inference rules, 

• standard actions   ― actions derivable from standard inference rules, 

• nonstandard actions ― actions derivable from nonstandard inference rules. 

Since we have assumed that the formulas stored in repositories are valid, all reachable actions must ensure this 

requirement is met. 

6.4 Constructors of the algebra of denotations 

6.4.1 Auxiliary functions 

We shall need two functions: 

free    : IndVar-FT x MetCon-FT ⟼ {tt, ff}               variable is free in metacondition 

matching  : IndVar-FT x Text    ⟼ {‘OK’} | Error    the sort of a variable matches the sort of text 

We assume that the first function returns ff also in the case where a variable does not appear in the metacondition.  

The second function is more sophisticated. It recognizes the sort of a variable and then performs a parsing 

procedure of the textual argument to identify its sort. The implementation of this function in our model means 

that the future implementation of the ecosystem must be equipped with an intelligent editor built over the gram-

mar of Lingua-FT, i.e., including its parser.  

6.4.2 Constructors of substitution vectors 

Substitution vectors are defined as mappings from individual variables to arbitrary texts, but reachable substitu-

tion vectors should comply with the compatibility of the sorts of variables with the sorts of associated texts. First 

function builds a simple substitution vector: 

create-sub : IndVar-FT x Text ⟼ SubVecDen 
create-sub(inv, ter) =  
 not matching(inv, tex) ➔ ‘matching not satisfied’ 
 true        ➔ [inv/tex] 

The next function expands a given substitution vector by a new component: 

expand-sub : SubVecDen x IndVar-FT x Text ⟼ SubVecDen  
expand-sub.(sub, inv, tex) = 
 sub.inv = !      ➔ ‘variable already assigned’ 
 not matching(inv, tex) ➔ ‘matching not satisfied’ 
 true        ➔ sub[inv/ter] 
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6.4.3 Constructors of basic actions  

6.4.3.1 Substitution actions 

We start by defining some auxiliary concepts. For any metacondition mec, any text tex, and any individual 

variable inv (inv runs over ide, rex, vex, etc.) by 

mec[inv/tex] 

we denote the result of the substitution of tex for all free occurrences of inv in mec. If inv is not free in mec, or 

does not appear in mec, then mec[inv/tex] = mec. The next function does the same but checks if the substitution 

is legal: 

swap : IndVar-FT x Text ⟼ MetCon-FT ⟼ MetCon-FT | Error 
swap.(inv, tex).mec = 
 not free.(inv, mec)   ➔ ‘variable not free’ 

not matching(inv, tex) ➔ ‘matching not satisfied’ 
 true        ➔ mec[inv/tex] 

This function is designed to return an error if the result of the swapping does not belong to MetCon-FT. The 

following function swaps several free variables for texts one after another. 

replace : SubVecDen ⟼ MetCon-FT ⟼ MetCon-FT | Error 
replace.svd.mec = 
 let 
  [inv-1/tex-1,…,inv-n/tex-n] = svd 

mec-1 = swap.(inv-1,tex-1).mec 
  mec-i =             for i = 2;n 
   mec-(i-1) : Error  ➔ mec-(i-1) 
   true      ➔ swap.(inv-i/tex-i).mec-(i-1) 
 true ➔ mec-n 

Now we are prepared to define the constructor of the actions of substitution. It takes three arguments: 

• nam-s ― source-formula name 

• svd  ― substitution-vector denotation, 

• nam-t ― target-formula name, 

and returns a function that modifies repositories: 

substitute : Name x SubVecDen x Name  ⟼ ActDen    i.e. 
substitute : Name x SubVecDen x Name  ⟼ Repository ⟼ Repository | Error 
sub-gro.(nam-s, svd, nam-t).rep =                 -s – source,  -t – target  

rep.nam-s = ? ➔ ‘no source metacondition’ 
 rep.nam-t = !  ➔ ‘target name already assigned’ 
 let 
  so-mec = rep.nam-s  
  ta-mec = replace.svd.so-mec 
 ta-mec : Error   ➔ ta-mec 
 true       ➔ (rep[nam-t/ta-mec], rdi) 

This function: 

1. checks if the source identifier points to a metacondition, 

2. checks if the target identifier is not already assigned, 

3. gets the source metacondition, 

4. performs the indicated replacement and checks if the result is not an error, 

5. modifies the current repository by storing in it the target metacondition under the target identifier. 
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6.4.3.2 Detachment actions  

The detachment rule is the following: 

A |- mec1  
A |- (mec1 implies mec2) 

A |- mec2 

To define a corresponding action, let’s start by introducing an auxiliary function: 

root : MetCon-FT ⟼ {‘and’, ‘or’, ‘implies’, ‘not’, ‘nil’} 
root.mec = 
 mec = and(mec-1, mec-2) ➔ ‘and’ 
 … 

This function returns the name of the root operator of a compound metacondition (i.e., the top operator of the 

parsing tree of the metacondition) and ‘nil’ for an atomic metacondition. The following constructor creates an 

action that generates a valid formula and stores it in the current repository. 

detach : Name x Name x Name ⟼ ActDen 
detach : Name x Name x Name ⟼ Repository ⟼ Repository | Error 
detach.(nam-p, nam-i, nam-t).rep =        -p – prerequisite, -i – implication, -c – conclu-

sion   
 rep.nam-p = ?   ➔ ‘no prerequisite metacondition’ 
 rep.nam-i  = ?   ➔ ‘no implication metacondition’ 
 rep.nam-c = !   ➔ ‘conclusion name already assigned’ 
 let 
  mec-p = rep.nam-p  

mec-i  = rep.nam-i   
root.mec-i ≠ implies ➔ ‘implication expected’ 
let 

implies(mec-ps, mec-co) = mec-i             ps- “premise”, co- “conclusion” 

 mec-p ≠ mec-ps  ➔ ‘prerequisite inadequate’ 
 true       ➔ (rep[nam-c/mec-co], rdi) 

Note that the validity of mec-co follows from the rule of detachment and the facts that mec-p and mec-i are in 

the repository, i.e., are valid. The sign ≠ denotes the inequality of texts. 

6.4.3.3 Are substitution and detachment candidates for everyday tools? 

Although the actions of substitution and of detachment are enough to prove the validity of all provable metacon-

ditions without quantifiers, using them in a direct form may lead to a lengthy manipulation of formulas even in 

simple situations. Assume that we have developed and stored in a repository a metaprogram of the form of a 

ground (all green) metacondition 

pre prc : spr post poc 

and a ground metacondition of the form  

prc1   prc 

Assume further that we intend to use the following construction rule (Lemma 9.4.3-7 in Sec. 9.4.3 of [6]), i.e., a 

free metacondition: 

pre prc : spr post poc 
prc1  prc 

pre prc1 : spr post poc 

to derive a metaprogram (again, a ground metacondition): 

pre prc1 : spr post poc                             (6.4.3-1) 
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Although in [6] we treated such lemmas as rules of building metaprograms, in the context of our formalized 

theory, they are not inference rules but valid metaconditions, that is, axioms stored in repositories as formulas. In 

our case, the corresponding formula is the following:  

((pre prc : spr post poc) and (prc1  prc)) implies (pre prc1 : spr post poc)             (6.4.3-2) 

Due to this understanding, we should be able to formally prove the soundness (i.e., validity) of this formula within 

our formal theory of denotations.  

Our goal is now to derive the target metaprogram by using exclusively the rules of substitution and detachment. 

To do that, our programmer has to perform the following steps: 

1. Indicate a substitution vector [prc/prc, spr/spr, poc/poc, prc1/prc1] and perform a substitution action to 

generate from (6.4.4-2) the ground metacondition: 

((pre prc : spr post poc) and (prc1  prc)) implies (pre prc1 : spr post poc) 
2. In order to apply the detachment action to the implication in 1., one has to store 

((pre prc : spr post poc) and (prc1  prc))  
   in a repository, and to do that, one has to perform the following steps: 

a. identify the name of metaprogram ((pre prc : spr post poc), 
b. identify the name of metacondition (prc1  prc), 
c. identify in the repository a tautology (it should be there as one of our axioms): 

(mec1 implies (mec2 implies (mec1 and mec2))  
d. apply an appropriate substitution to 3.c. to get and store in the repository 

((pre prc : spr post poc) implies ((prc1  prc) implies  
((pre prc : spr post poc) and (prc1  prc))) 

e. apply detachment to 3.d. with 3.a to get and store in repository 

((prc1  prc) implies ((pre prc : spr post poc) and (prc1  prc))) 
f. apply detachment to 3.e. with 3.b to get and store in repository 

((pre prc : spr post poc) and (prc1  prc))) 
3. Apply detachment to (6.3.4-2) using 3.f. to ultimately obtain and save (6.3.4-1). 

Note that the steps from 1. to 3. constitute a proof of the correctness (validity) of the metaprogram  

(pre prc1 : spr post poc). 

In this context, our reader may feel somewhat discouraged by the numerous steps a programmer must take to 

replace a precondition with a stronger one. In fact, formal proofs are always much longer than proofs developed 

by “working mathematicians.” That is the price we pay for the ability to mechanize them. And here is the point! 

We will computerize these proofs as procedures called actions, which we will use as substitutes for program-

construction rules.  

6.4.4 Constructors of standard actions 

6.4.4.1 Strengthening-precondition action 

Whereas basic actions may be regarded as implementations of basic inference rules, standard actions play the 

same role in the case of standard inference rules. Based on the rule derived in Sec. 5.3.3, we define the following 

constructor of actions: 

strengthen-pre : Name x Name x Name ⟼ Repository ⟼ Repository | Error 
strengthen-pre.(nam-m, nam-s, nam-t).rep =      -m – metaprogram, -s – stronger, -t – target   
 rep.nam-m  = ?        ➔ ‘no prerequisite metaprogram’ 
 rep.nam-s  = ?        ➔ ‘no stronger-than metacondition’ 
 rep.nam-t   = !         ➔ ‘target name already assigned’ 
 not is-metaprogram.(rep.nam-m)  ➔ ‘metaprogram expected’ 
 root.(rep.nam-s) ≠        ➔ ‘a stronger-than metacondition expected’ 
 let  
  pre prc : spr post poc  = rep.nam-m 
  prc1 con     = rep.nam-s 
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 con ≠ prc           ➔ ‘conclusion not adequate’ 
 let 
  new-mec = pre prc1 : spr post poc 
 true             ➔ rep[nam-t/new-mec] 

In this definition, we have introduced two new parsing-oriented techniques. One is a textual predicate is-met-
aprogram which checks if a given piece of text is a metaprogram. It belongs to the same category as the function 

root. The second technique is more sophisticated and is included in the let-declaration 

let  
 pre prc : spr post poc  = rep.nam-m 
 prc1 con     = rep.nam-s. 

It is understood as a description of the following parsing-based algorithm that creates the following local substi-

tution vector: 

pre-con      prc 
spec-prg     spr 
post-con     poc 
stronger-pre-con  prc1 
condition     con 

and then uses it in synthesizing the target metaprogram.  

Of course, to apply the strengthening-precondition action, we must store earlier in the repository appropriate 

valid metaconditions of the form con1  con2. Note that the FT-formula con1  con2 is, of course, not valid. 

Examples of valid stronger-than metaconditions may be the following: 

(ide is integer)                  (ide < ide+1) 
(ide1 is integer) and (ide2 is integer) and (ide1 < ide2)     (ide1+1 < ide2+1) 
(x is integer)                   (x < x+1) 
y := x+1 @ (var x is integer) and-k (var y is integer) and-k (y = 4)    

(var x is integer) and-k (var y is integer) and-k (x=3)   

6.4.4.2 Adding irrelevant conditions 

If we need to add an irrelevant condition to a pre- and post-condition of a program ― this may happen when we 

are adding an underivable condition ― we have to use an action derived from the following construction rule: 

pre prc: spr post poc 
con irrelevant-for (pre prc: spr post poc) 

pre (prc and-k con) : spr post (poc and-k con) 

To do that, analogously as in the case described in Sec. 6.4.4.1, we must previously store in the repository appro-

priate lemmas about irrelevant-for metacondition, such as, e.g., (cf. Sec. 2.2): 

different(ide1, ide2) implies ((ide1 is free) irrelevant-for (let ide2 be tex tel)).       (6.4.4.2-1) 

The denotation of the ad-hock introduced metacondition different(ide1, ide2) is the following: 

different.(ide1, ide2).vlu =  
 vlu.ide1 ≠ vlu.ide2  ➔ true 
 true       ➔ false 

where vlu is a valuation (see Sec. 2.3) and relation ≠ compares two strings of characters.  

Let’s see how to apply this rule by executing a corresponding action to add a condition (var x is integer) to the 

metaprogram 

pre (y is free) 
let y be integer tel 

post (var y is integer)  
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To do that, we identify lemma (6.4.4.2-1) in the repository, and we apply to it a substitution action with the 

following vector: 

ide1  x 
ide2  y 
tex  integer 

thus getting 

different(x, y) implies ((x is free) irrelevant for (let y be integer)) 

At this moment, we, of course, would like to use detachment, but can we expect that different(x, y) is in the 

repository? To achieve that, we should have derived it from some axioms about the inequality of character strings. 

In this case, we might use our theorem prover, but a simpler solution may be to use a procedure that simply 

compares two strings of characters. Note that we may proceed analogously when we want to prove the validity 

of, say 8 < 10 (cf. Sec. 2.3). Such shortenings of a formalized route would not be acceptable if we were building 

a “self-standing” theorem prover, but in our situation we may accept such hybrid solutions, since all we need is 

a vehicle for the justification of formulas.   

The expected constructor of actions is the following: 

add-irrelevant : Name x Name x Name ⟼ Repository ⟼ Repository | Error 
add-irrelevant.(nam-m, nam-i, nam-t).rep =       -m – metaprogram, -i – irrelevant, -t – target  

 rep.nam-m  = ?        ➔ ‘no prerequisite metaprogram’ 
 rep.nam-i  = ?        ➔ ‘no irrelevant-for metacondition’ 
 rep.nam-t   = !         ➔ ‘target name already assigned’ 
 not is-metaprogram.(rep.nam-m)  ➔ ‘metaprogram expected’ 

root.(rep.nam-s) ≠ irrelevant-for   ➔ ‘an irrelevant-for metacondition expected’ 
 let  
  pre prc : spr post poc        = rep.nam-m 
  con irrelevant-for (pre prc: spr post poc)  = rep.nam-i 
  new-mec            = pre (prc and-k con) : spr post (poc and-k con) 
 true             ➔ rep[nam-t/new-mec] 

This definition is similar to the one of strengthen-pre in Sec. 6.4.4.1. It involves parsing and pattern-matching 

techniques.  

6.4.5 Constructors of nonstandard actions 

6.4.5.1 Assignment-creation action 

In this case, we implement the inference rule developed in Sec. 5.3.4.1. The corresponding constructor is the 

following: 

assign : Identifier x Text x Name x Name ⟼ Repository ⟼ Repository | Error 
assign.(ide, tex, nam-c, nam-t).rep =                   -c – condition, -t – target  

 rep.nam-t  = ?      ➔ ‘target name already assigned’ 
 not is-value-expression.tex ➔ ’value expression expected’ 
 let 
  con    = rep.nam-c 
  new-con  = con[ide/tex]                     see Sec. 5.3.3.1 

  asi-program  = pre con[ide/vex] and-k type-compatible(ide, vex) : ide := vex post con 

true          ➔ rep[nam-t/asi-program] 

In this case, one of the arguments is a text that is supposed to be a value expression. Since this argument is written 

by a programmer “from the keyboard”, the action is equipped with a parsing engine that checks the syntactic 

correctness of this argument.   
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6.4.5.2 Proving action  

Implementationally, this “singular” action activates a theorem prover which attempts to prove the validity of a 

given metacondition. We include it in the category of nonstandard actions, although it is not associated with any 

single inference rule, but, in a sense, with all of them. It will be used to prove the validity of these formulas, 

which can’t be derived, or which a programmer can’t derive, from the formulas stored in the repository. 

To define the corresponding constructor, we assume that we have in our model a partial function that represents 

a theorem prover 

valid : MetCon-FT  → {YES, NO] 

This function is partial, as the validity of formulas in our theory is undecidable, i.e., there is no algorithm that can 

check whether a given formula is valid or not11. The constructor of the corresponding action is the following: 

prove : Text x Name ⟼ Repository → Repository | Error 
prove.(tex, nam).rep =  
 not is-metacondition.tex ➔ “the argument is not a metacondition’ 

valid.mec = ?     ➔ ? 
valid.mec = ‘NO’    ➔ ‘metacondition not valid’ 
true         ➔ rep[nam/mec] 

This action first checks if the argument text is a metacondition, and, if that is the case, tries to prove its validity.  

6.5 An example of a program’s derivation ― bubble sort 

Bubble sort is a well-known program that sorts an array “in situ”, i.e., without using additional memory resources. 

It uses two pointers that are moving along the array being sorted. Initially, both pointers are in their starting 

positions, where i = j = 0. 

 

 

 

 

 

 

 

Next, in every iteration of an outer loop, pointer i is incremented by 1, and pointer j is moved to the position of i. 
At this moment, the array is sorted from 0 to i, possibly with the exception of the j’s element (the bubble). We 

say that the array is sorted from 0 to i, but j, and this property is an invariant of an inner loop where pointer j, 

with the assigned element, is moved step-by-step to the left. This happens as long as j’s element is smaller than 

its (j-1)’s neighbor. Once that is not the case, we stop moving j since the array is already sorted from 0 to i. In 

Fig. 6.5-1, our array is sorted from 0 to 4, but 2.  

The program that we intend to develop is the following: 

pre (constant source is array of integer) and-k (len(source) > 0) :  
let n, i, j be integer tel ; 
let arr be array of integer tel ; 
read source into arr daer ; n := len(arr) ; i := 0 ; j := 0;          
while i < n                    # sorting from 0 to i+1 
 do        

asr (arr sorted from 0 to i) and-k permutation(arr, source) and-k (0 ≤ j ≤ i ≤ n) ;  
  i := i+1;  

 
11 Kurt Gödel proved in 1931 that all theories that “include” arithmetic are undecidable.  
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Fig. 6.5-1 Bubble sort 
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j := i ;      
  while arr[j-1] > arr[j]  
   do  

asr (arr sorted from 0 to i but j) and-k permutation(arr, source) and-k (0 ≤ j ≤ i ≤ n) rsa ; 
swap(arr, j - 1, j) ; 
j := j - 1 ; 
asr (arr sorted from 0 to i but j) and-k permutation(arr, source) and-k (0 ≤ j ≤ i ≤ n) rsa ; 

od ;   
asr sorted(arr, 0, i) and-k permutation(arr, source) and-k (0 ≤ j ≤ i ≤ n) rsa ; 

od ; 
asr (arr sorted from 0 to i) and-k permutation(arr, source) and-k (i=n)  

post sorted(arr, 0, n) and-k permutation(arr, source)  

To construct this program, we assume that Lingua-V has been enriched by the concept of a constant and associ-

ated with it a constant’s predicate of the form: 

constant ide is tex 

where tex is a type expression. This predicate is satisfied in a state if ide has been (somehow) marked as a 

constant in this state. We assume further that the only way a constant may be used in the program component of 

a metaprogram is in a reading instruction of the form: 

read ide1 into ide2 daer 

where ide1 is a constant and ide2 is a declared variable12. For this instruction to be executed cleanly in a state, 

ide1 must be a constant of the type of ide2. We assume further to have an array-oriented instruction: 

swap(arr, j) 

that swaps two adjacent elements arr[j-1] with arr[j] in array, and expression 

len(ide) 

that returns the length of the value of ide, provided that it is an array. We also assume to be given three array-

oriented predicates (for simplicity, we define them using variables appearing in our program): 

permutation(arr, source)  ― array arr is a permutation of array source, 

sorted(arr, j, i)      ≡ (def)  0 ≤ j < i ≤ len(arr)  and-k (∀k : j ≤ k < i) (arr[k] ≤ arr[k+1]) 
arr sorted from 0 to i but j  ≡ (def)  if j = 0 then sorted(arr, 0, i) else sorted(arr, 0, j-1) and-k sorted(arr, j+1, i) fi 

Below, we present a two-column table that documents the development of our program. The elements of the 

domain Name are typed in Times New Roman italics. We use these names not only to name the repository’s 

items, but also when “calling” them in other items.  

In our example, we concentrate more on the “logistics” of program development than on its logic. Therefore, 

we justify some steps solely by intuitive arguments. To save space, we omit vertical arrows, as they are all uni-

directional in our case.  

COMMENTS REPOSITORY 

We introduce a named condition into 

the repository. In this case, we do not 

need to prove or derive anything; in-

stead, we assume that our editor will 

verify the syntactic correctness of the 

introduced condition. We also assume 

that the condition var arr is array is im-

plicit in the condition  

invariant :: 

(constant source is array of integer) and-k (var i, j, n is integer) and-k 
(len(arr) = n) and-k (0 ≤ i ≤ j ≤ n) and-k (n > 0) and-k 
(arr sorted from 0 to i but j) and-k permutation(arr, source)  

 

 

 

12 To formally build the mechanism of constants into Lingua-V we have to redefine the denotations of assignments, 

expressions, procedure calls and conditions. Since it is fairly clear, how to do it, we skip this issue.  
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permutation(arr, source).  
 

We identify in the repository while-ax-

iom.  

 

 

 

 

 

 

 

By an action of substitution, we gener-

ate the while-lemma1.  

 

In the next steps, we have to derive all 

five metaconditions above the line of 

the while-lemma. We skip easy, but la-

borious, details, noticing only that  

invariant implies j ≥ 0 that, in turn, en-

sures the limited replicability (LR) of 

the body of the loop (see Sec. 9.3.4 of 

[6]). 

 

 

 

 

To derive the inner-loop from the 

while-lemma, we apply two actions: 

• detachment, 

• the omission of an assertion in 

a correct metaprogram.  

 

 

Now, we proceed to the creation of the 

outer loop. The general lemma we 

need now is while-lemma 2.0. We 

have to generate it or find it in the re-

pository. Here 

body neutral for ide1 

means that the execution of the body 

does not alter the value of ide1. 

 

 

From this lemma, by appropriate sub-

stitutions (body is replaced by inner-

loop), we get while-lemma2.1  

 

 

 
 

 

 

 

 

 

while-axiom :: 

pre (inv and-k vex) : sin post inv    and 
inv insures LR of asr vex rsa ; sin   and 
prc  inv           and 
inv  (vex or-k (not-k vex))     and 
inv and-k (not-k vex))  poc 

pre prc : asr inv rsa ; while vex do sin od post poc 

 

while-lemma1 :: 

pre (invariant and-k arr[j-1] > arr[j] ) :  
 swap(arr, j - 1, j) ; j:= j-1  
post invariant                and 
invariant insures LR of asr arr[j-1] > arr[j] rsa ;  
 swap(arr, j - 1, j) ; j:= j-1             and 
invariant  invariant             and 
invariant  (arr[j-1] > arr[j] or-k (not-k arr[j-1] > arr[j] ))   and 
invariant and-k (not-k arr[j-1] > arr[j] ))  invariant and-k sorted(arr, 0, i)  

pre invariant :  
 asr invariant rsa ;  
 while arr[j-1] > arr[j] do swap(arr, j - 1, j) ; j:= j-1 od  
post invariant and-k sorted(arr, 0, i)  
 

inner-loop :: 

pre invariant :  
 while arr[j-1] > arr[j] do swap(arr, j - 1, j) ; j:= j-1 od  
post invariant and-k sorted(arr, 0, i)  

 

 

while-lemma2.0 :: 

pre inc and-k (ide1 < ide2) : ide1 := ide1+1 ; body post inc and 
inc  ide1 < ide2 or-k ide1 ≥ ide2          and 

body neutral for ide1  

pre inc end-k (ide1 < ide2) : 
while ide1 < ide2 do ide1 := ide1 + 1  ; body od 

post inc end-k (ide1 = ide2) 

 

while-lemma2.1 :: 

pre invariant and-k (i < n) :  
 i := i + 1 ; inner-loop 
post invariant and-k sorted(arr, 0, i)  and 
invariant  i > n or-k i ≤ n     and 

inner-body neutral for i  

pre invariant end-k (i < n) : 
while i < n do i:= i + 1  ; inner-loop od 

post invariant end-k (i= n) 
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From while-lemma2.1, we obtain the 

result by detachment of the outer loop.  

 

 

 

In the last but one step, we generate 

the preamble program.   

 

In the last step, we sequentially com-

bine the preamble with the outer loop, 

getting in this way our target program 

in a “compact form”, i.e., with 

metanames. We can use it in this form 

in further work, or “unfold” the names 

by a substitution action if we want to 

run our program immediately.  

 

outer-loop :: 

pre invariant end-k (i < n) : 
while i < n do i:= i + 1  ; inner-loop od 

post invariant end-k (i = n) 

preamble :: 

pre (constant source is array of integer) and-k (len(source) > 0) :  
let n, i, j be integer tel ; 
let arr be array of integer tel ; 
read source into arr daer ;  
n := len(arr) ;  
i := 0 ;  
j := 0 

post invariant end-k (i < n)  
 

6.6 A hybrid scenario of the development of a repository 

As we already mentioned in Sec. 2.3, we shall not attempt to make our repository logically complete. On the 

other hand, we must ensure that it is consistent and, at the same time, “sufficiently complete” to make sufficiently 

many lemmas provable. We propose the following ad hoc scenario to achieve this goal: 

1. We establish two repositories in the ecosystem: one for lemmas (valid formulas) and another one for 

inference rules.  

2. We initialize the repository of lemmas with some commonly known mathematical axioms and lemmas 

that we can derive from them. This initial repository should include all (currently) known to us lemmas 

expressible in Lingua-FT.  

3. We initialize the repository of inference rules with basic inference rules plus these standard and nonstand-

ard inference rules, the soundness of which we can prove. 

4. While working with the ecosystem, we add to it new lemmas and new inference rules under the condition 

that we prove their validity or soundness, respectively, either within our formalized theory or within the 

metatheory of the denotations of Lingua-FT. 

The permission of adding lemmas that must be proved “outside” of our formalized theory may seem a little 

extravagant, but in our opinion, it won’t damage the credibility of our method, still significantly speeding up the 

development of a “practical” ecosystem. A final justification of our proposal should be done through experiments 

with the development of “real” programs.  

7 A comparison of Lingua-V with Dafny 

Contrary to Lingua-V, which is today only a sketch of a future language, the Dafny project is based on an 

implemented programming language. The syntax of this language is formally defined by a BNF-like grammar, 

but its semantics are described only informally and mainly by examples. Along with this language, Dafny offers 

an ecosystem within Visual Studio Code, as well as a system for proving program correctness. The latter is based 

on Hoare-like proof rules that are tacitly assumed to be adequate for the languages. In other words, Dafny is 

assumed to be implemented in a way that guarantees the soundness of these rules, rather than being proved to be 

so. The process of proving program correctness is partially automated by the theorem prover Z3 (see [1]). 

In our opinion, the significant difference between the Lingua project and Dafny is such that our construction 

rules are proven sound based on a denotational model of Lingua-V, rather than being assumed to be so. More 

technical differences are summarized in the table below.  
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CONCEPT LINGUA DAFNY 

denotations The development of a many-sorted alge-
bra of denotations is the “founding step” in 
designing Lingua.   

The concept of denotations is neither 
used nor even mentioned.  

syntax Syntax is derived from an earlier con-
structed algebra of denotations in three 
steps: the derivation of abstract syntax, of 
concrete syntax, and of colloquial syntax. 
The first two of them are many-sorted al-
gebras. All syntaxes are described by 
equational grammars. 

Syntax is defined by BNF equations and 
is “final”, i.e., it corresponds to our collo-
quial syntax. The definition of syntax is 
essentially the “founding step” of the lan-
guage.  

semantics Abstract and concrete syntaxes are de-
fined in a way that guarantees the exist-
ence of (unique) homomorphisms into the 
algebra of denotations. These homomor-
phisms are the denotational semantics of 
Lingua. The semantics of the (final) collo-
quial syntax is a composition of a recov-
ery function that turns colloquial syntax 
into concrete syntax and the semantics of 
concrete syntax. 
 

In the source report [11], only the syntax 
is formally defined. Semantics is de-
scribed informally and may be guessed 
to be implicit in Hoare-like proof rules. 
Although the authors never explicitly 
state this, they seem to regard these 
rules as evident, thereby tacitly assum-
ing that the implementation (semantics) 
of Dafny ensures their soundness. 

values Typed data or objects. No such concepts are explicitly defined.  

abstract errors All domains of values include abstract er-
rors, and all constructors “react” to them. 
Besides, states may carry errors, and 
therefore, the denotations of program 
components also react to errors. The 
mechanism for handling errors is formal-
ized in semantics. 

We have not identified any comments 
about errors.  

types Finitistic structured elements that unam-
biguously identify sets of values called the 
clans of types.  

Informally understood as sets of values 
plus corresponding constructors. There 
are several categories of built-in types, 
as well as mechanisms for creating 
user-defined types. The description of 
types mixes the syntax with an (infor-
mal) semantics of type- and value decla-
rations.  

value expressions The denotations of value expressions are 
partial state-to-value functions, and may 
return errors as values. Expressions do 
not generate side effects. 

Value expressions are called right-hand-
side expressions and constitute a very 
rich syntactic category. They are used 
both in programs and in their specifica-
tions. They may have side effects, e.g., 
if they include method calls.  

reference expressions Their denotations are total functions from 
states to references or errors.  

They are called left-hand-side expres-
sions and are defined in Sec. 9.14 of 
[11]. An example is a[i], where a is an 
array. It might be interesting to analyze 
them in the context of the de Bakker 
paradox (Sec. 9.4.6.6 of [10]). 

boolean expressions (BE) Their denotations are partial 3-valued 
predicates based on McCarthy’s calculus. 

No formal definition, but it is pointed out 
that the evaluation of BE may generate 
an error in a way that corresponds to 
McCarthy’s calculus. 

type expressions Their denotations are total functions from 
states to types or errors.  

Not explicitly defined. 

conditions Syntactically constitute a superset of bool-
ean expressions, but semantically are 

One may guess that conditions are just 
expressions with boolean values, alt-
hough not all such conditions may be 
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